赞
踩
在数仓(数据仓库)开发中,不同的组件和服务会使用不同的端口号进行通信。由于数仓的实现可能依赖于多种技术和框架(如Hadoop、Hive、HBase、Spark等),因此涉及的端口号也会有所不同。以下是一些数仓开发中常用端口号及其作用的概述,以及相关的操作指令建议。
常用端口号及其作用
8032:YARN ResourceManager的IPC(Inter-Process Communication)端口。ResourceManager是YARN的核心组件,负责集群资源的分配和管理。这个端口用于ResourceManager与其他YARN组件(如NodeManager)之间的内部通信。
8088:YARN ResourceManager的Web UI端口。通过这个端口,用户可以访问ResourceManager的Web界面,查看集群的状态、运行的应用程序以及相关的统计信息等。这是查看MapReduce作业执行情况的主要端口之一。
虽然MapReduce作业的执行情况主要通过YARN ResourceManager的Web UI(即8088端口)来查看,但MapReduce本身并不直接提供特定的Web UI端口。然而,MapReduce作业的日志和输出通常会存储在HDFS(Hadoop Distributed File System)上,因此与HDFS相关的端口(如50070或9870,取决于Hadoop的版本)也可能用于间接地查看MapReduce作业的输出和日志。
端口号 组件/服务 作用
9083 Hive Metastore Hive Metastore服务的默认监听端口,用于存储和管理Hive的元数据。
10000 Hive JDBC Hive JDBC服务的端口,允许通过JDBC协议连接到Hive服务。
端口号 组件/服务 作用
60010(旧)、16010(新) HBase Master Web UI HBase Master的Web UI端口,用于监控和管理HBase集群的状态。
60030 HBase RegionServer Web UI HBase RegionServer的Web UI管理端口,提供RegionServer的状态和性能信息。
端口号 组件/服务 作用
7077 Spark Master Spark集群中Master节点与Worker节点进行通信的端口。
8080 Spark Master Web UI Spark Master的Web UI端口,用于监控和管理Spark作业和集群状态。
8081 Spark Worker Web UI Spark Worker的Web UI端口,提供Worker节点的状态和性能信息。
4040 Spark Driver Web UI Spark应用程序的Driver节点的Web UI端口,用于查看应用程序的运行状态和日志。
端口号 组件/服务 作用
2181 Zookeeper Zookeeper客户端连接的端口,用于集群管理和协调。
9092 Kafka Kafka集群节点之间通信的RPC端口。
对于数仓中的操作指令,通常会依赖于具体的组件和服务。以下是一些通用的操作指令示例:
hive --service metastore
访问Hive JDBC(通常通过客户端或应用程序进行,而非直接通过命令行):
配置JDBC连接字符串,包括主机名、端口号(10000)和数据库名(对于Hive,通常是默认数据库或指定数据库)。
请注意,上述操作指令和端口号可能因Hadoop、Hive、HBase、Spark等组件的版本和配置而有所不同。在实际操作中,建议参考各组件的官方文档和配置文件(如hdfs-site.xml、hive-site.xml、hbase-site.xml、spark-defaults.conf等)以获取准确的信息。
此外,由于数仓技术的不断发展和更新,新的端口号和操作指令可能会被引入,而旧的则可能会被弃用。
启动Spark的指令可以根据不同的使用场景和需求有所不同。以下是一些常见的启动Spark的指令及其说明:
Spark Shell是Spark提供的一个交互式编程环境,支持Scala、Python和R语言。通过Spark Shell,用户可以方便地进行数据探索和交互式数据分析。
Scala Shell:在Spark安装目录下的bin文件夹中,执行./spark-shell(Linux/Mac)或spark-shell.cmd(Windows)命令。
Python Shell:同样在bin文件夹中,执行./pyspark(Linux/Mac)或pyspark.cmd(Windows)命令。
对于需要部署到集群上运行的Spark应用程序,通常使用spark-submit命令来提交。spark-submit命令的基本语法如下:
bash
spark-submit [options] <app-jar|python-file> [app-arguments]
其中,[options]是Spark应用程序的选项参数,用于配置应用程序的运行环境;<app-jar|python-file>是要运行的Spark应用程序的Jar包或Python文件;[app-arguments]是传递给应用程序的参数。
常用的选项参数包括:
–master:指定Spark应用程序运行的资源管理器,如local(本地模式)、spark://host:port(Standalone模式)、yarn(YARN模式)等。
–deploy-mode:指定Spark应用程序的部署模式,如client或cluster。
–class:指定要运行的主类(仅当提交Jar包时使用)。
–executor-memory:指定每个Executor的内存大小。
–num-executors:指定Executor的数量。
–driver-memory:指定Driver的内存大小。
–conf:指定一些Spark配置属性。
如果你是在集群环境下运行Spark,并且希望手动启动Spark的各个组件,可以使用以下命令:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。