赞
踩
在最近的微软Build大会上,微软宣布了许多新内容,其中包括新款Copilot+ PC和围绕Copilot生态系统的一系列功能。其中最引人注目的是发布了一些新的Phi模型,特别是Phi-3 Vision模型。本文将详细探讨Phi-3 Vision模型的特性,并提供相关Python代码示例,帮助您了解该模型的使用方法和潜力。
Phi-3 Vision是Phi-3模型家族中的一员,具有4.2亿参数。微软对这些模型进行了优化,使其能够在边缘设备上运行,并支持多模态输入,即文本和图像。Phi-3 Vision模型特别适合处理图像理解和视觉问答任务。
该模型在5,000亿个视觉和文本tokens上进行了训练,使用了512个H100 GPU进行了1.5天的训练。模型的训练方法包括预训练、监督微调和对齐调整等步骤,使用了合成数据以提高训练效果。
下面是使用Phi-3 Vision模型的Python代码示例,该代码展示了如何加载模型并执行图像理解和视觉问答任务。
首先,需要安装必要的Python库。建议使用Hugging Face的Transformers库来加载和运行模型。
pip install transformers
pip install torch
pip install datasets
接下来,我们将加载Phi-3 Vision模型和处理器。
from transformers import AutoProcessor, AutoModelForVision2Seq
import torch
# 加载处理器和模型
processor = AutoProcessor.from_pretrained("microsoft/phi-3-vision")
model = AutoModelForVision2Seq.from_pretrained("microsoft/phi-3-vision")
# 设定设备
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
我们需要准备输入的图像和文本,并将它们进行处理。
from PIL import Image
import requests
# 加载示例图像
url = "https://example.com/sample_image.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# 定义文本输入
text = "What is shown in this image?"
使用处理器预处理图像和文本,然后生成模型的输出。
# 预处理输入
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
# 生成输出
outputs = model.generate(**inputs)
# 解码输出
decoded_output = processor.batch_decode(outputs, skip_special_tokens=True)[0]
print("Model Output:", decoded_output)
假设输入图像是一张包含花朵的图片,模型的输出可能如下:
Model Output: The image shows a variety of flowers, including large pink flowers with a bee on it.
代码首先加载了处理器和模型,并设定了计算设备。这里使用了Hugging Face的Transformers库来加载预训练的Phi-3 Vision模型。
processor = AutoProcessor.from_pretrained("microsoft/phi-3-vision")
model = AutoModelForVision2Seq.from_pretrained("microsoft/phi-3-vision")
处理器将图像和文本转换为模型可接受的输入格式,并将其移动到指定的设备上。
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
模型生成的输出为token序列,需要使用处理器将其解码为可读文本。
outputs = model.generate(**inputs)
decoded_output = processor.batch_decode(outputs, skip_special_tokens=True)[0]
通过本文的介绍和代码示例,我们详细了解了微软新发布的Phi-3 Vision模型及其在多模态任务中的应用。该模型在图像理解和视觉问答等任务中表现出色,具有广泛的应用前景。希望本文能够帮助您更好地理解和使用Phi-3 Vision模型。
如果您对该模型有任何问题或想法,欢迎在评论区留言。如果您觉得本文有帮助,请点赞并关注我们的频道,我们将在未来带来更多精彩内容。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。