赞
踩
定义变量δt(i):表示时刻t状态为i的所有路径中的概率最大值,公式如下:
过程:
上面的符号之前都已经见过,这里不再解释,下面为了更好地理解这几步,我们来举个例子。
还是盒子球模型。
盒子和球模型λ= (A, B,π),状态集合Q={1, 2, 3},观测集合V={红, 白},
已知观测序列O=(红,白,红),试求最优状态序列,即最优路径I*= (i1*, i2*, i3*)。
解:
如下图所示(图中的数字在之后的步骤中会一一推导出来)
要在所有可能的路径中选择一条最优路径,按照以下步骤出来。
1,初始化
t=1时,对每个状态i, i=1, 2, 3,求状态为i观测o1为红的概率,记此概率为δ1(i),则:
δ1(i) = πibi(o1)=πibi(红), i = 1, 2, 3
代入实际数据
δ1(1) = 0.10,δ1(2) =0.16,δ1(3) = 0.28
记ψ1(i) = 0,i = 1, 2, 3。
2,在t=n时
t=2时,对每个状态i,求在t=1时状态为j观测为红并且在t=2时状态为i观测为白的路径的最大概率,记概率为δ2(t),则根据:
同时,对每个状态i, i = 1, 2, 3,记录概率最大路径的前一个状态j:
计算:
同样,在t=3时
3,求最优路径的终点
以P*表示最优路径的概率,则
最优路径的终点是i3*:
4,逆向找i2*,i1*:
在t=2时,i2* = ψ3(i3*) =ψ3(3) = 3
在t=2时,i1* = ψ2(i2*) =ψ2(3) = 3
于是求得最优路径,即最有状态序列I* = (i1*,i2*, i3*) = (3, 3, 3)。
转载自:https://www.2cto.com/kf/201609/544539.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。