赞
踩
结合leetcode学习c++
学习资料来源
二叉树(binary tree)是一种非线性数据结构,代表“祖先”与“后代”之间的派生关系,体现了“一分为二”的分治逻辑。
与链表类似,二叉树的基本单元是节点,每个节点包含值、左子节点引用和右子节点引用。
/* 二叉树节点结构体 */
struct TreeNode {
int val; // 节点值
TreeNode *left; // 左子节点指针
TreeNode *right; // 右子节点指针
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
每个节点都有两个引用(指针),分别指向左子节点(left-child node)和右子节点(right-child node),该节点被称为这两个子节点的父节点(parent node)。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的左子树(left subtree),同理可得右子树(right subtree)。
根节点(root node):位于二叉树顶层的节点,没有父节点。
叶节点(leaf node):没有子节点的节点,其两个指针均指向 None 。
边(edge):连接两个节点的线段,即节点引用(指针)。
节点所在的层(level):从顶至底递增,根节点所在层为 1 。
节点的度(degree):节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
二叉树的高度(height):从根节点到最远叶节点所经过的边的数量。
节点的深度(depth):从根节点到该节点所经过的边的数量。
节点的高度(height):从距离该节点最远的叶节点到该节点所经过的边的数量。
/* 初始化二叉树 */
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建节点之间的引用(指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
普通二叉树 (General Binary Tree):
满二叉树 (Full Binary Tree):
完全二叉树 (Complete Binary Tree):
平衡二叉树 (Balanced Binary Tree):
二叉搜索树 (Binary Search Tree, BST):
AVL 树 (Adelson-Velsky and Landis Tree):
红黑树 (Red-Black Tree):
std::map
和 std::set
。堆 (Heap):
线索二叉树 (Threaded Binary Tree):
哈夫曼树 (Huffman Tree):
下面是一个简单的二叉树节点定义和一个创建二叉搜索树的示例:
#include <iostream>
using namespace std;
// 定义二叉树节点
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
// 插入节点到二叉搜索树
TreeNode* insert(TreeNode* root, int val) {
if (!root) {
return new TreeNode(val);
}
if (val < root->val) {
root->left = insert(root->left, val);
} else {
root->right = insert(root->right, val);
}
return root;
}
// 中序遍历二叉搜索树
void inorderTraversal(TreeNode* root) {
if (root) {
inorderTraversal(root->left);
cout << root->val << " ";
inorderTraversal(root->right);
}
}
int main() {
TreeNode *root = NULL;
root = insert(root, 50);
insert(root, 30);
insert(root, 20);
insert(root, 40);
insert(root, 70);
insert(root, 60);
insert(root, 80);
cout << "Inorder traversal of the binary search tree: ";
inorderTraversal(root);
cout << endl;
return 0;
}
Inorder traversal of the binary search tree: 20 30 40 50 60 70 80
二叉树是一种多功能的数据结构,不同的二叉树类型适合不同的应用场景。了解每种类型的特性可以帮助你更好地选择合适的数据结构来解决问题。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。