赞
踩
环境ubuntu20.04 ROS-noetic
国内少有搭建Moveit和Gazebo联合仿真的教程,对于搭建双臂等复杂的仿真平台更是鲜有资料,因此想要把自己的见解分享出来供大家参考,共同提高。
本文提出了两种方法实现Moveit 对双臂的规划,并在gazebo中进行仿真
首先是方案一,主要思路是:使用moveit setup assistant配置规划组的时候,创建一个父组,包含两条臂的规划组。
先说方案一的优缺点:
优点:两条臂互相知道对方的存在,Moveit进行规划的时候会考虑到两条臂之间的避障
缺点:Moveit不能实现对两条臂的独立控制,如果对单独臂的规划组进行操作时,规划动作的执行是阻塞的,即一条臂执行完,另一条臂才能继续执行;如果对含有两个臂的规划组的父组进行操作时,存在的问题是:Moveit规划时总是保证两个臂的运行时间是一致的,即两个臂的轨迹长度相差较大时,Moveit使两个臂的运行速度相差很大,保证两者同时开始,同时结束。
这样不能实现我想要的两个臂比较独立的控制,但是实现起来比较简单。
实现的效果展示:
主要过程参考moveit官方教程:Multiple Robot Arms — moveit_tutorials Noetic documentation
但是官方教程中,并未详细说明如何控制双臂同时规划,所以这里我们对该部分详细说明,教程中已有的部分不再赘述,建议读者先仔细阅读教程。
进入正文,首先在 moveit setup assistant配置部分,我们在完成教程已有的内容后,还需要增加一个group,我这里命令为dual_arm(ps:这里前后图片规划组的名称一个是dual_arm 一个是dual_arms,是我两次实践过程中命名不同而已,读者要注意统一,别被我误导)
选择 add subgroups 然后把之前创建的四个group(这部分内容看官方教程)分别是right_arm 、left_arm、left_hand、right_hand添加进去
然后是关于eef末端执行器的配置,制定两个末端执行器,这里是为了方便后续编程同时控制双臂,指明两个臂各自的末端执行器,后续才能通过编程接口进行控制。
这里moveit setup assistant配置我们需要额外添加的部分(或者与教程不同的部分)就全部完成了,生成moveit_config包,我这里命名的是 dual_arm_moveit_config,生成之后进行编译,运行demo.launch ,运行效果如下图所示:
当rviz界面左下角MotionPlanning插件,Planning Group选择dual_arms(dual_arm)时,可以看到两条臂都有可以被拖动的标记,拖动 goal state到一个你想要的位置,然后plan execute,可以看到两条臂同时运动了!
如果两条臂处于碰撞状体时,接触的相应部分也会变红,这说明Moveit在规划时会考虑两条臂之间的碰撞。
当然Planning Group选择right_arm或者left_arm时也能实现对单独臂进行控制。
刚才仅是在rviz中的可视化界面实现了控制,下面介绍如何通过编程接口进行对双臂的控制。
先给出代码,主要的介绍都在注释中。
- #include <ros/ros.h>
- #include <moveit/move_group_interface/move_group_interface.h>
- //包含需要的头文件
- int main(int argc, char** argv)
- {
- ros::init(argc,argv,"demo");
- ros::NodeHandle node_handle;
- //ros节点初始化
- //开辟线程,主要作用是为move group节点获取当前机器人状态
- ros::AsyncSpinner spinner(1);
- spinner.start();
- //这些string都是之前我们在setup assistant配置中定义的,一定要保持一致
- static const std::string right_arm_group = "right_arm";
- static const std::string left_arm_group = "left_arm";
- static const std::string dual_arm_group = "dual_arms";
- static const std::string right_end_effector_link = "right_arm_link8";
- static const std::string left_end_effector_link = "left_arm_link8";
- //实例化move group接口
- moveit::planning_interface::MoveGroupInterface right_arm_move_group_interface(right_arm_group);
- moveit::planning_interface::MoveGroupInterface left_arm_move_group_interface(left_arm_group);
- moveit::planning_interface::MoveGroupInterface dual_arm_move_group_interface(dual_arm_group);
- //这个ready也是在setup assistant配置中提前定义好的pose,详细过程见官方教程
- right_arm_move_group_interface.setNamedTarget("ready");
- left_arm_move_group_interface.setNamedTarget("ready");
- //实例化一些plan
- moveit::planning_interface::MoveGroupInterface::Plan right_arm_plan;
- moveit::planning_interface::MoveGroupInterface::Plan left_arm_plan;
- moveit::planning_interface::MoveGroupInterface::Plan dual_arm_plan;
- //对机械臂运行到ready位姿进行规划和执行,可以看到机械臂的运动是阻塞执行的,直到right arm执行完,才去执行left arm,因此这是我们需要dual arm group的原因
- bool rgt_success = (right_arm_move_group_interface.plan(right_arm_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
- if(rgt_success)
- {
- right_arm_move_group_interface.execute(right_arm_plan);
- }
- bool lft_success = (left_arm_move_group_interface.plan(left_arm_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
- if(lft_success)
- {
- left_arm_move_group_interface.execute(left_arm_plan);
- }
- //实例化两个pose,从当前pose进行修改,获得target pose
- geometry_msgs::PoseStamped current_right_arm_pose = right_arm_move_group_interface.getCurrentPose();
- geometry_msgs::PoseStamped current_left_arm_pose = left_arm_move_group_interface.getCurrentPose();
-
- geometry_msgs::PoseStamped target_right_arm_pose = current_right_arm_pose;
- target_right_arm_pose.pose.position.z -= 0.3;
- target_right_arm_pose.pose.position.x += 0.4;
- target_right_arm_pose.pose.position.x = -target_right_arm_pose.pose.position.x;
-
- geometry_msgs::PoseStamped target_left_arm_pose = current_left_arm_pose;
- target_left_arm_pose.pose.position.z += 0.2;
- //设置双臂的规划目标,可以看到setPoseTarget函数通过指定了末端执行器的link来区分两个臂,可以看到两个臂是同时运行的dual_arm_move_group_interface.setPoseTarget(target_right_arm_pose,right_end_effector_link);
- dual_arm_move_group_interface.setPoseTarget(target_left_arm_pose,left_end_effector_link);
- bool dual_success = (dual_arm_move_group_interface.plan(dual_arm_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
- if(dual_success)
- {
- dual_arm_move_group_interface.execute(dual_arm_plan);
- }
- //结束
- ros::shutdown();
- return 0;
- }

这是官网code API文档介绍:Source Code & API | MoveIt
cmakelist:
cmake_minimum_required(VERSION 3.0.2) project(dual_arms) ## Compile as C++11, supported in ROS Kinetic and newer # add_compile_options(-std=c++11) ## Find catkin macros and libraries ## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) ## is used, also find other catkin packages find_package(catkin REQUIRED COMPONENTS roscpp geometry_msgs moveit_ros_planning_interface moveit_ros_planning ) ## System dependencies are found with CMake's conventions # find_package(Boost REQUIRED COMPONENTS system) ## Uncomment this if the package has a setup.py. This macro ensures ## modules and global scripts declared therein get installed ## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html # catkin_python_setup() ################################################ ## Declare ROS messages, services and actions ## ################################################ ## To declare and build messages, services or actions from within this ## package, follow these steps: ## * Let MSG_DEP_SET be the set of packages whose message types you use in ## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...). ## * In the file package.xml: ## * add a build_depend tag for "message_generation" ## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET ## * If MSG_DEP_SET isn't empty the following dependency has been pulled in ## but can be declared for certainty nonetheless: ## * add a exec_depend tag for "message_runtime" ## * In this file (CMakeLists.txt): ## * add "message_generation" and every package in MSG_DEP_SET to ## find_package(catkin REQUIRED COMPONENTS ...) ## * add "message_runtime" and every package in MSG_DEP_SET to ## catkin_package(CATKIN_DEPENDS ...) ## * uncomment the add_*_files sections below as needed ## and list every .msg/.srv/.action file to be processed ## * uncomment the generate_messages entry below ## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...) ## Generate messages in the 'msg' folder # add_message_files( # FILES # Message1.msg # Message2.msg # ) ## Generate services in the 'srv' folder # add_service_files( # FILES # Service1.srv # Service2.srv # ) ## Generate actions in the 'action' folder # add_action_files( # FILES # Action1.action # Action2.action # ) ## Generate added messages and services with any dependencies listed here # generate_messages( # DEPENDENCIES # std_msgs # Or other packages containing msgs # ) ################################################ ## Declare ROS dynamic reconfigure parameters ## ################################################ ## To declare and build dynamic reconfigure parameters within this ## package, follow these steps: ## * In the file package.xml: ## * add a build_depend and a exec_depend tag for "dynamic_reconfigure" ## * In this file (CMakeLists.txt): ## * add "dynamic_reconfigure" to ## find_package(catkin REQUIRED COMPONENTS ...) ## * uncomment the "generate_dynamic_reconfigure_options" section below ## and list every .cfg file to be processed ## Generate dynamic reconfigure parameters in the 'cfg' folder # generate_dynamic_reconfigure_options( # cfg/DynReconf1.cfg # cfg/DynReconf2.cfg # ) ################################### ## catkin specific configuration ## ################################### ## The catkin_package macro generates cmake config files for your package ## Declare things to be passed to dependent projects ## INCLUDE_DIRS: uncomment this if your package contains header files ## LIBRARIES: libraries you create in this project that dependent projects also need ## CATKIN_DEPENDS: catkin_packages dependent projects also need ## DEPENDS: system dependencies of this project that dependent projects also need catkin_package( # INCLUDE_DIRS include # LIBRARIES dual_arms # CATKIN_DEPENDS other_catkin_pkg # DEPENDS system_lib ) ########### ## Build ## ########### ## Specify additional locations of header files ## Your package locations should be listed before other locations include_directories( include ${catkin_INCLUDE_DIRS} ) ## Declare a C++ library # add_library(${PROJECT_NAME} # src/${PROJECT_NAME}/dual_arms.cpp # ) ## Add cmake target dependencies of the library ## as an example, code may need to be generated before libraries ## either from message generation or dynamic reconfigure # add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) ## Declare a C++ executable ## With catkin_make all packages are built within a single CMake context ## The recommended prefix ensures that target names across packages don't collide # add_executable(${PROJECT_NAME}_node src/dual_arms_node.cpp) add_executable(demo src/demo.cpp) ## Rename C++ executable without prefix ## The above recommended prefix causes long target names, the following renames the ## target back to the shorter version for ease of user use ## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node" # set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "") ## Add cmake target dependencies of the executable ## same as for the library above # add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) add_dependencies(demo ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) ## Specify libraries to link a library or executable target against # target_link_libraries(${PROJECT_NAME}_node # ${catkin_LIBRARIES} # ) target_link_libraries(demo ${catkin_LIBRARIES} ) ############# ## Install ## ############# # all install targets should use catkin DESTINATION variables # See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html ## Mark executable scripts (Python etc.) for installation ## in contrast to setup.py, you can choose the destination # catkin_install_python(PROGRAMS # scripts/my_python_script # DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} # ) ## Mark executables for installation ## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html # install(TARGETS ${PROJECT_NAME}_node # RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} # ) ## Mark libraries for installation ## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html # install(TARGETS ${PROJECT_NAME} # ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} # LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} # RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION} # ) ## Mark cpp header files for installation # install(DIRECTORY include/${PROJECT_NAME}/ # DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION} # FILES_MATCHING PATTERN "*.h" # PATTERN ".svn" EXCLUDE # ) ## Mark other files for installation (e.g. launch and bag files, etc.) # install(FILES # # myfile1 # # myfile2 # DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION} # ) ############# ## Testing ## ############# ## Add gtest based cpp test target and link libraries # catkin_add_gtest(${PROJECT_NAME}-test test/test_dual_arms.cpp) # if(TARGET ${PROJECT_NAME}-test) # target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME}) # endif() ## Add folders to be run by python nosetests # catkin_add_nosetests(test)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。