当前位置:   article > 正文

6个可解释AI (XAI)的Python框架推荐

xai的经典结构有哪些

7e0444fd81dfa106e5d50fc55eea9cc7.png

  1. 来源:DeepHub IMBA
  2. 本文约1500字,建议阅读5分钟本文为你介绍6个用于可解释性的Python框架。

随着人工智能的发展为了解决具有挑战性的问题,人们创造了更复杂、更不透明的模型。AI就像一个黑匣子,能自己做出决定,但是人们并不清楚其中缘由。建立一个AI模型,输入数据,然后再输出结果,但有一个问题就是我们不能解释AI为何会得出这样的结论。需要了解AI如何得出某个结论背后的原因,而不是仅仅接受一个在没有上下文或解释的情况下输出的结果。

可解释性旨在帮助人们理解:

  • 如何学习的?

  • 学到了什么?

  • 针对一个特定输入为什么会做出如此决策?

  • 决策是否可靠?

在本文中,我将介绍6个用于可解释性的Python框架。


SHAP

SHapley Additive explanation (SHapley Additive explanation)是一种解释任何机器学习模型输出的博弈论方法。它利用博弈论中的经典Shapley值及其相关扩展将最优信贷分配与局部解释联系起来(详见论文的细节和引用)。

数据集中每个特征对模型预测的贡献由Shapley值解释。Lundberg和Lee的SHAP算法最初发表于2017年,这个算法被社区在许多不同的领域广泛采用。

71aed23bfc06f11b1a66f1f3d77377ec.png

使用pip或conda安装shap库。

 
 
  1. # install with pip
  2. pip install shap
  3. # install with conda
  4. conda install -c conda-forge shap

b19391564b06bee3efb0fa79f7e5b6a2.png

使用Shap库构建瀑布图

f9fa36d2bc016762f602ba28de42b74d.png

使用Shap库构建Beeswarm图

576b6585a21622dbca540afd51ba08e4.png

使用Shap库构建部分依赖图

LIME

在可解释性领域,最早出名的方法之一是LIME。它可以帮助解释机器学习模型正在学习什么以及为什么他们以某种方式预测。Lime目前支持对表格的数据,文本分类器和图像分类器的解释。

知道为什么模型会以这种方式进行预测对于调整算法是至关重要的。借助LIME的解释,能够理解为什么模型以这种方式运行。如果模型没有按照计划运行,那么很可能在数据准备阶段就犯了错误。

4e677652682da85d750a1437bee33c43.png

使用pip安装:

pip install lime

LIME 构建的局部解释图

7ed8c9ead5a3a861ce0deb9298d79ccc.png

LIME构建的Beeswarm 图


Shapash

“ Shapash是一个使机器学习对每个人都可以进行解释和理解Python库。Shapash提供了几种类型的可视化,显示了每个人都能理解的明确标签。数据科学家可以更轻松地理解他们的模型并分享结果。最终用户可以使用最标准的摘要来理解模型是如何做出判断的。”

为了表达数据中包含故事、见解和模型的发现,互动性和漂亮的图表必不可少。业务和数据科学家/分析师向AI/ML结果展示和互动的最佳方法是将其可视化并且放到web中。Shapash库可以生成交互式仪表盘,并收集了许多可视化图表。与外形/石灰解释性有关。它可以使用SHAP/Lime作为后端,也就是说它只提供了更好看的图表。

0bd7098040ac30bf2ab31827644b0327.png

使用Shapash构建特征贡献图

faf2ba49910abcbea937cd4733b7617d.gif

使用Shapash库创建的交互式仪表板

7145f300786ef352d21d25129bc718d9.png

使用Shapash构建的局部解释图


InterpretML

InterpretML是一个开源的Python包,它向研究人员提供机器学习可解释性算法。InterpretML支持训练可解释模型(glassbox),以及解释现有的ML管道(blackbox)。

InterpretML展示了两种类型的可解释性:glassbox模型——为可解释性设计的机器学习模型(如:线性模型、规则列表、广义可加模型)和黑箱可解释性技术——用于解释现有系统(如:部分依赖,LIME)。使用统一的API并封装多种方法,拥有内置的、可扩展的可视化平台,该包使研究人员能够轻松地比较可解释性算法。InterpretML还包括了explanation Boosting Machine的第一个实现,这是一个强大的、可解释的、glassbox模型,可以像许多黑箱模型一样精确。

0b2098c4d18407f68563ca8691f23a1e.gif

使用InterpretML构建的局部解释交互式图

2e1a3b718bfacacfb0bec0eece988da8.gif

使用InterpretML构建的全局解释图


ELI5

ELI5是一个可以帮助调试机器学习分类器并解释它们的预测的Python库。目前支持以下机器学习框架:

  • scikit-learn

  • XGBoost、LightGBM CatBoost

  • Keras

ELI5有两种主要的方法来解释分类或回归模型:

  • 检查模型参数并说明模型是如何全局工作的;

  • 检查模型的单个预测并说明什么模型会做出这样的决定。

709aa7651dee1d296bd9f3465d839710.jpeg

使用ELI5库生成全局权值

77797bd53b56b60881f2416cbb685c3e.jpeg

使用ELI5库生成局部权重


OmniXAI

OmniXAI (Omni explained AI的简称),是Salesforce最近开发并开源的Python库。它提供全方位可解释的人工智能和可解释的机器学习能力来解决实践中机器学习模型在产生中需要判断的几个问题。对于需要在ML过程的各个阶段解释各种类型的数据、模型和解释技术的数据科学家、ML研究人员,OmniXAI希望提供一个一站式的综合库,使可解释的AI变得简单。

9c76a1c7914a78a052d2a26269679dda.png

以下是OmniXAI提供的与其他类似库的对比:

4c5086eb67bf7875561649be87828c1a.png

最后,下面是这6个框架的官方地址:

https://shap.readthedocs.io/en/latest/index.html

https://github.com/marcotcr/lime

https://shapash.readthedocs.io/en/latest/

https://interpret.ml/

https://eli5.readthedocs.io/

https://github.com/salesforce/OmniXAI

作者:Moez Ali

编辑:黄继彦

20bf0ae27544fe8b02506b50e57f17d1.png

1a6164a14eca3b1916612f17b583019e.png

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/956502
推荐阅读
相关标签
  

闽ICP备14008679号