当前位置:   article > 正文

TigerBot和ChatGLM-6B大语言模型_tigerbot 大语言模型

tigerbot 大语言模型

目录

1 TigerBot大语言模型

 1.1 环境安装

1.2 模型下载

1.2.1 hugging face 网站下载

1.2.2 百度网盘下载

1.3 推理

2 ChatGLM大语言模型

2.1环境搭建

2.2 模型下载

2.3 推理


1 TigerBot大语言模型

虎博科技”发布自研多模态大模型TigerBot,开源模型、代码及数据,今天先搭建环境体验一下他的大模型,在github上找到:GitHub - TigerResearch/TigerBot: TigerBot: A multi-language multi-task LLM

 1.1 环境安装

  1. conda create --name tigerbot python=3.8
  2. conda activate tigerbot
  3. conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

我服务器的cuda是11.0版本的,如果我改成pytorch-cuda=11.0发现找不到这个包。于是去CUDA Toolkit 11.7 Downloads | NVIDIA 开发者

下载了11.7的cuda,然后安装了新版本的cuda。

然后

  1. git clone https://github.com/TigerResearch/TigerBot
  2. cd TigerBot
  3. pip install -r requirements.txt

1.2 模型下载

1.2.1 hugging face 网站下载

 点击左边的蓝色链接就去了huggingface网站,

 然后这时候不能直接

git clone https://huggingface.co/TigerResearch/tigerbot-7b-sft

这样下载之后是不包含大文件的,要先安装lfs,然后再下载

  1. curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
  2. sudo apt-get install git-lfs
  3. git lfs install
  4. git clone https://huggingface.co/TigerResearch/tigerbot-7b-sft

1.2.2 百度网盘下载

没什么好说的了,

1.3 推理

单卡推理用下面的命令

CUDA_VISIBLE_DEVICES=0 python infer.py --model_path ${MODEL_DIR}

注意后面的MODEL_DIR是目录,不是模型文件名字,就把你下载的模型文件夹放这里就行了。

CUDA_VISIBLE_DEVICES=0 python infer.py --model_path ./tigerbot-7b-sft

得到如下结果

我再试一下web界面的,

  1. CUDA_VISIBLE_DEVICES=0 python ./apps/web_demo.py
  2. loading model: tigerbot-7b-sft...
  3. Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:09<00:00, 4.73s/it]
  4. Using the following device map for the model: {'': 0}
  5. /root/anaconda3/envs/tigerbot_chw/lib/python3.8/site-packages/gradio/components/textbox.py:259: UserWarning: The `style` method is deprecated. Please set these arguments in the constructor instead.
  6. warnings.warn(
  7. Running on local URL: http://127.0.0.1:7860

直接运行CUDA_VISIBLE_DEVICES=0 python ./apps/web_demo.py然后利用公司的内网地址也不能访问,需要修改代码,将web_demo.py最后一行的

  1. demo.queue().launch( share=False,  inbrowser=True)
  2. 修改为
  3. demo.queue().launch(server_name="0.0.0.0", share=False,  inbrowser=True)
  4. 即可。

2 ChatGLM大语言模型

2.1环境搭建

这个是清华大学的,直接去github,

  1. git clone https://github.com/THUDM/ChatGLM-6B
  2. cd ChatGLM-6B
  3. conda create -n chatglm_chw python=3.8
  4. conda activate chatglm_chw
  5. pip install -r requirements.txt

官网上直接就是用pip install,我还是先创建个conda环境,然后再安装依赖,

2.2 模型下载

  1. git lfs install
  2. git clone https://huggingface.co/THUDM/chatglm-6b

经历漫长的等待,会下载完,

2.3 推理

因为我们是自己下载了代码,所以修改cli_demo.py中的这两行为如下形式

  1. tokenizer = AutoTokenizer.from_pretrained("./chatglm-6b", trust_remote_code=True)
  2. model = AutoModel.from_pretrained("./chatglm-6b", trust_remote_code=True).half().cuda()

然后 python cli_demo.py可以启动程序,然后可以输入问题 

参考文献:

GitHub - TigerResearch/TigerBot: TigerBot: A multi-language multi-task LLM

Hugging Face——大规模预训练模型下载_GeekZW的博客-CSDN博客

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/179495
推荐阅读
相关标签
  

闽ICP备14008679号