赞
踩
嗨喽~大家好呀,这里是魔王呐 !
链家二手房数据:多页《—一页
发送请求,向目标网址发送数据请求
获取网页源代码<响应文本信息>
解析数据
保存数据
from lxml import etree
import csv
import requests
因CSDN不能出现网站链接,所以我把下图代码删了,大家可以按照下图片把它添加一下
headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36' } html = requests.get(url=url, headers=headers) # print(html.text) # 解析 转换数据类型 soup = etree.HTML(html.text) # print(soup) doc = soup.xpath('//*[@id="content"]/div[1]/ul/li') # print(doc) list_1 = [] for fang in doc: name = fang.xpath('.//div[@class="title"]/a/text()')[0] # print(len(name)) # print(name) address = fang.xpath('.//div[@class="positionInfo"]/a/text()') # print(len(address)) # print(address) # for i in range(len(address)): if address: address = '-'.join(address) # print(address) # 价格 price = fang.xpath('.//div[@class="totalPrice totalPrice2"]/span/text()')[0] # print(price) list_1.append([name, address, float(price)]) print(list_1) for p in list_1: list_2 = p print(list_2) file = open('ershoufang.csv', mode='a', newline='') csv_write = csv.writer(file) csv_write.writerow(list_2)
import pandas as pd from pyecharts.charts import Bar from pyecharts import options data = pd.read_csv('./ershoufang.csv', names=['name', 'address', 'price'], encoding='gbk') print(data) bar = Bar() bar.add_xaxis(list(data['address'])) bar.add_yaxis('长沙二手房房价图', list(data['price'])) bar.set_global_opts( title_opts=options.TitleOpts(title="长沙二手房价图表"), datazoom_opts=options.DataZoomOpts() ) bar.render('长沙二手房房价图.html')
要成功,先发疯,下定决心往前冲!
学习是需要长期坚持的,一步一个脚印地走向未来!
未来的你一定会感谢今天学习的你。
—— 心灵鸡汤
本文章到这里就结束啦~感兴趣的小伙伴可以复制代码去试试哦 本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。