赞
踩
一、
1、卷积核超参数选择困难,自动找到卷积的最佳组合。
2、1x1卷积核,不同通道的信息融合。使用1x1卷积核虽然参数量增加了,但是能够显著的降低计算量(operations)
3、Inception Moudel由4个分支组成,要分清哪些是在Init里定义,哪些是在forward里调用。4个分支在dim=1(channels)上进行concatenate。24+16+24+24 = 88
4、最大池化层只改变宽、高;padding为增加输入的宽、高,使卷积后宽、高不变
二、
- import torch
- import torch.nn as nn
- from torchvision import transforms
- from torchvision import datasets
- from torch.utils.data import DataLoader
- import torch.nn.functional as F
- import torch.optim as optim
-
- # prepare dataset
-
- batch_size = 64
- transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
-
- train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
- train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
- test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
- test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
-
- # design model using class
- class InceptionA(nn.Module):
- def __init__(self, in_channels):
- super(InceptionA, self).__init__()
- self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
-
- self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
- self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
-
- self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
- self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
- self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
-
- self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
-
- def forward(self, x):
- branch1x1 = self.branch1x1(x)
-
- branch5x5 = self.branch5x5_1(x)
- branch5x5 = self.branch5x5_2(branch5x5)
-
- branch3x3 = self.branch3x3_1(x)
- branch3x3 = self.branch3x3_2(branch3x3)
- branch3x3 = self.branch3x3_3(branch3x3)
-
- branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
- branch_pool = self.branch_pool(branch_pool)
-
- outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
- return torch.cat(outputs, dim=1) # b,c,w,h c对应的是dim=1
-
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
- self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16
-
- self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
- self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
-
- self.mp = nn.MaxPool2d(2)
- self.fc = nn.Linear(1408, 10)
-
-
- def forward(self, x):
- in_size = x.size(0)
- x = F.relu(self.mp(self.conv1(x)))
- x = self.incep1(x)
- x = F.relu(self.mp(self.conv2(x)))
- x = self.incep2(x)
- x = x.view(in_size, -1)
- x = self.fc(x)
-
- return x
-
- model = Net()
-
- # construct loss and optimizer
- criterion = torch.nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
-
- # training cycle forward, backward, update
-
-
- def train(epoch):
- running_loss = 0.0
- for batch_idx, data in enumerate(train_loader, 0):
- inputs, target = data
- optimizer.zero_grad()
-
- outputs = model(inputs)
- loss = criterion(outputs, target)
- loss.backward()
- optimizer.step()
-
- running_loss += loss.item()
- if batch_idx % 300 == 299:
- print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
- running_loss = 0.0
-
-
- def test():
- correct = 0
- total = 0
- with torch.no_grad():
- for data in test_loader:
- images, labels = data
- outputs = model(images)
- _, predicted = torch.max(outputs.data, dim=1)
- total += labels.size(0)
- correct += (predicted == labels).sum().item()
- print('accuracy on test set: %d %% ' % (100*correct/total))
-
-
- if __name__ == '__main__':
- for epoch in range(10):
- train(epoch)
- test()
1、先使用类对Inception Moudel进行封装
2、先是1个卷积层(conv,maxpooling,relu),然后inceptionA模块(输出的channels是24+16+24+24=88),接下来又是一个卷积层(conv,mp,relu),然后inceptionA模块,最后一个全连接层(fc)。
3、1408这个数据可以通过x = x.view(in_size, -1)后调用x.shape得到。
三、
1、梯度消失问题,用ResNet解决
2、跳连接,H(x) = F(x) + x,张量维度必须一样,加完后再激活。不要做pooling,张量的维度会发生变化。
代码说明:
先是1个卷积层(conv,maxpooling,relu),然后ResidualBlock模块,接下来又是一个卷积层(conv,mp,relu),然后esidualBlock模块模块,最后一个全连接层(fc)。
- import torch
- import torch.nn as nn
- from torchvision import transforms
- from torchvision import datasets
- from torch.utils.data import DataLoader
- import torch.nn.functional as F
- import torch.optim as optim
-
- # prepare dataset
-
- batch_size = 64
- transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
-
- train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
- train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
- test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
- test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
-
- # design model using class
- class ResidualBlock(nn.Module):
- def __init__(self, channels):
- super(ResidualBlock, self).__init__()
- self.channels = channels
- self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
- self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
-
- def forward(self, x):
- y = F.relu(self.conv1(x))
- y = self.conv2(y)
- return F.relu(x + y)
-
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
- self.conv2 = nn.Conv2d(16, 32, kernel_size=5) # 88 = 24x3 + 16
-
- self.rblock1 = ResidualBlock(16)
- self.rblock2 = ResidualBlock(32)
-
- self.mp = nn.MaxPool2d(2)
- self.fc = nn.Linear(512, 10) # 暂时不知道1408咋能自动出来的
-
-
- def forward(self, x):
- in_size = x.size(0)
-
- x = self.mp(F.relu(self.conv1(x)))
- x = self.rblock1(x)
- x = self.mp(F.relu(self.conv2(x)))
- x = self.rblock2(x)
-
- x = x.view(in_size, -1)
- x = self.fc(x)
- return x
-
- model = Net()
-
- # construct loss and optimizer
- criterion = torch.nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
-
- # training cycle forward, backward, update
-
-
- def train(epoch):
- running_loss = 0.0
- for batch_idx, data in enumerate(train_loader, 0):
- inputs, target = data
- optimizer.zero_grad()
-
- outputs = model(inputs)
- loss = criterion(outputs, target)
- loss.backward()
- optimizer.step()
-
- running_loss += loss.item()
- if batch_idx % 300 == 299:
- print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
- running_loss = 0.0
-
-
- def test():
- correct = 0
- total = 0
- with torch.no_grad():
- for data in test_loader:
- images, labels = data
- outputs = model(images)
- _, predicted = torch.max(outputs.data, dim=1)
- total += labels.size(0)
- correct += (predicted == labels).sum().item()
- print('accuracy on test set: %d %% ' % (100*correct/total))
-
-
- if __name__ == '__main__':
- for epoch in range(10):
- train(epoch)
- test()
运行结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。