当前位置:   article > 正文

Apollo智能驾驶|apollo8.0新特性讲解-感知框架(2)_apollo8.0感知融合

apollo8.0感知融合

前言

百度Apollo开放平台自上线以来始终保持着创新和高频的自我迭代,从最开始聚焦于基础能力的搭建,走向侧重场景能力的发展,再升级为对平台工程易用性精益求精的追求。12月28日,百度Apollo开放平台面向所有开发者,正式推出了Apollo自动驾驶开放平台的全新升级版本——Apollo 8.0,进一步夯实了平台的易用性,让开发者操作更简单易上手。

感知框架

为了帮助开发者更好的提升感知模块的开发效率,在Apollo 8.0版本中,我们提供了一套完整的端到端自动驾驶感知开发流程,在数据、模型、框架和验证4个主要环节都做了提升,同时迭代优化斓任务流程和工具,帮助开发者快速实现自动驾驶感知的开发、部署和验证,提高感知开发效率。

bf5315b8d5fb4ea5a0f34f2e2d5f38fa.jpg

 1、清晰的任务流水线,多样的算法插件

在8.0感知框架中,开发者可以根据不同的感知任务类型来创建对应的流水线,并通过配置文件来定义流水线任务。相比以前,每个任务的运行流程更加清晰,同时还方便进行扩展。此外,开发者还可以根据需要选择不同的算法插件,比如Apollo感知模块提供4种检测器,开发者可以根据配置文件,选择不同的检测器,来验证检测效果,通过算法插件,算法工程师更加专注于算法本身,而不需要过多关注框架的实现。

 

d7a4fbdb940e46aa8cde4e67fac891be.jpg

2、全新的模型训练,易用的深度学习模型

此次Apollo 8.0中,Apollo联合Paddle3D提供了端到端的自动驾驶模型开发解决方案,覆盖了从自动驾驶数据集到模型训练、模型评估和模型导出的算法开发全流程。

对自动驾驶驾驶中,开发者比较关心的3D目标检测任务和分割任务,Apollo提供了最新SOTA的算法模型实现,包括单目相机检测,激光雷达点云目标检测和多模态的目标检测模型,开发者开箱即用,不需要再苦于自己复现模型。同时,我们还提供模型的Benchmark,包括速度、精度等指标以及预训练好的模型。开发者可以实时跟踪最新的3D目标检测和分割模型实现,保持自动驾驶感知算法上的先进性。 

c33ed862180546bfab1a4d644a93d3ca.jpg

 3、高效的模型管理,便捷的模型验证

为了更方便快捷的将训练好的模型部署到Apollo系统中,在此次Apollo 8.0中我们引入了模型Meta和模型管理。其中模型Meta中包含了模型的基本信息,如名称、任务类型、传感器类型、框架和训练所需的数据集,同时还包含了模型的标准输入、输入、前后处理、模型文件存放的路径等。同时,Apollo还提供模型管理工具,开发者可以通过该工具下载安装模型仓库中的模型,展示系统中已经安装的模型和模型的详细信息。通过对模型进行标准化和模型管理工具,开发者可以非常方便的安装部署训练好的模型,并且管理这些模型,实现模型部署效率提升。

de035fcdbc754781bdf46b8ee48d7600.jpg 

此外,在感知模型验证中,我们提供了基于数据集的数据包(record文件),方便开发者直接基于数据集的数据来在线验证模型的检测效果,保证训练和部署是同一套基线,快速测试模型性能。除了提供测试数据包之外,Apollo 8.0还提供了可视化工具链,通过可视化的图形界面,展示传感器的原始数据和目标检测结果,方便开发者查看模型检测效果,调试感知模型。

0036d801b1e84ce28d01509c53166b78.jpg

 以下为官方的教学课程,感兴趣的小伙伴上课学习吧~

Apollo开放平台9.0专项技术公开课链接https://apollo.baidu.com/community/activity/16\《Apollo自动驾驶技术详解25讲》https://apollo.baidu.com/community/online-course/77

《自动驾驶新人之旅》https://apollo.baidu.com/community/online-course/11

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/210242
推荐阅读
相关标签
  

闽ICP备14008679号