赞
踩
- import torchvision.models as models
-
- #resnet
- model = models.ResNet(pretrained=True)
- model = models.resnet18(pretrained=True)
- model = models.resnet34(pretrained=True)
- model = models.resnet50(pretrained=True)
-
- #vgg
- model = models.VGG(pretrained=True)
- model = models.vgg11(pretrained=True)
- model = models.vgg16(pretrained=True)
- model = models.vgg16_bn(pretrained=True)
- # coding=UTF-8
- import torchvision.models as models
-
- #调用模型
- model = models.resnet50(pretrained=True)
- #提取fc层中固定的参数
- fc_features = model.fc.in_features
- #修改类别为9
- model.fc = nn.Linear(fc_features, 9)
- # coding=UTF-8
- import torchvision.models as models
- import torch
- import torch.nn as nn
- import math
- import torch.utils.model_zoo as model_zoo
-
- class CNN(nn.Module):
-
- def __init__(self, block, layers, num_classes=9):
- self.inplanes = 64
- super(ResNet, self).__init__()
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
- self.avgpool = nn.AvgPool2d(7, stride=1)
- #新增一个反卷积层
- self.convtranspose1 = nn.ConvTranspose2d(2048, 2048, kernel_size=3, stride=1, padding=1, output_padding=0, groups=1, bias=False, dilation=1)
- #新增一个最大池化层
- self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
- #去掉原来的fc层,新增一个fclass层
- self.fclass = nn.Linear(2048, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion,
- kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- #新加层的forward
- x = x.view(x.size(0), -1)
- x = self.convtranspose1(x)
- x = self.maxpool2(x)
- x = x.view(x.size(0), -1)
- x = self.fclass(x)
-
- return x
-
- #加载model
- resnet50 = models.resnet50(pretrained=True)
- cnn = CNN(Bottleneck, [3, 4, 6, 3])
- #读取参数
- pretrained_dict = resnet50.state_dict()
- model_dict = cnn.state_dict()
- # 将pretrained_dict里不属于model_dict的键剔除掉
- pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
- # 更新现有的model_dict
- model_dict.update(pretrained_dict)
- # 加载我们真正需要的state_dict
- cnn.load_state_dict(model_dict)
- # print(resnet50)
- print(cnn)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。