赞
踩
以下A*算法原理的描述转自长命百岁
假设有人想从A点移动到一墙之隔的B点,如下图,绿色的是起点A,红色是终点B,蓝色方块是中间的墙。
你首先注意到,搜索区域被我们划分成了方形网格。像这样,简化搜索区域,是寻路的第一步。这一方法把搜索区域简化成了一个二维数组。数组的每一个元素是网格的一个方块,方块被标记为可通过的和不可通过的。路径被描述为从A到B我们经过的方块的集合。一旦路径被找到,我们的人就从一个方格的中心走向另一个,直到到达目的地。
这些中点被称为“节点”。当你阅读其他的寻路资料时,你将经常会看到人们讨论节点。为什么不把他们描述为方格呢?因为有可能你的路径被分割成其他不是方格的结构。他们完全可以是矩形,六角形,或者其他任意形状。节点能够被放置在形状的任意位置-可以在中心,或者沿着边界,或其他什么地方。我们使用这种系统,无论如何,因为它是最简单的。
开始搜索
正如我们处理上图网格的方法,一旦搜索区域被转化为容易处理的节点,下一步就是去引导一次找到最短路径的搜索。在A*寻路算法中,我们通过从点A开始,检查相邻方格的方式,向外扩展直到找到目标。
我们做如下操作开始搜索:
在这一点,你应该形成如图的结构。在图中,暗绿色方格是你起始方格的中心。它被用浅蓝色描边,以表示它被加入到关闭列表中了。所有的相邻格现在都在开启列表中,它们被用浅绿色描边。每个方格都有一个灰色指针反指他们的父方格,也就是开始的方格。
接着,我们选择开启列表中的临近方格,大致重复前面的过程,如下。但是,哪个方格是我们要选择的呢?是那个F值最低的。
路径评分
选择路径中经过哪个方格的关键是下面这个等式:
我们的路径是通过反复遍历开启列表并且选择具有最低F值的方格来生成的。文章将对这个过程做更详细的描述。首先,我们更深入的看看如何计算这个方程。
正如上面所说,G表示沿路径从起点到当前点的移动耗费。在这个例子里,我们令水平或者垂直移动的耗费为10,对角线方向耗费为14。我们取这些值是因为沿对角线的距离是沿水平或垂直移动耗费的的根号2(别怕),或者约1.414倍。为了简化,我们用10和14近似。比例基本正确,同时我们避免了求根运算和小数。这不是只因为我们怕麻烦或者不喜欢数学。使用这样的整数对计算机来说也更快捷。你不就就会发现,如果你不使用这些简化方法,寻路会变得很慢。
既然我们在计算沿特定路径通往某个方格的G值,求值的方法就是取它父节点的G值,然后依照它相对父节点是对角线方向或者直角方向(非对角线),分别增加14和10。例子中这个方法的需求会变得更多,因为我们从起点方格以外获取了不止一个方格。
H值可以用不同的方法估算。我们这里使用的方法被称为曼哈顿方法,它计算从当前格到目的格之间水平和垂直的方格的数量总和,忽略对角线方向。然后把结果乘以10。这被成为曼哈顿方法是因为它看起来像计算城市中从一个地方到另外一个地方的街区数,在那里你不能沿对角线方向穿过街区。很重要的一点,我们忽略了一切障碍物。这是对剩余距离的一个估算,而非实际值,这也是这一方法被称为启发式的原因。想知道更多?你可以在这里找到方程和额外的注解。
F的值是G和H的和。第一步搜索的结果可以在下面的图表中看到。F,G和H的评分被写在每个方格里。正如在紧挨起始格右侧的方格所表示的,F被打印在左上角,G在左下角,H则在右下角。
现在我们来看看这些方格。写字母的方格里,G = 10。这是因为它只在水平方向偏离起始格一个格距。紧邻起始格的上方,下方和左边的方格的G值都等于10。对角线方向的G值是14。
H值通过求解到红色目标格的曼哈顿距离得到,其中只在水平和垂直方向移动,并且忽略中间的墙。用这种方法,起点右侧紧邻的方格离红色方格有3格距离,H值就是30。这块方格上方的方格有4格距离(记住,只能在水平和垂直方向移动),H值是40。你大致应该知道如何计算其他方格的H值了~。
每个格子的F值,还是简单的由G和H相加得到
继续搜索
为了继续搜索,我们简单的从开启列表中选择F值最低的方格。然后,对选中的方格做如下处理:
好了,让我们看看它是怎么运作的。我们最初的9格方格中,在起点被切换到关闭列表中后,还剩8格留在开启列表中。这里面,F值最低的那个是起始格右侧紧邻的格子,它的F值是40。因此我们选择这一格作为下一个要处理的方格。在紧随的图中,它被用蓝色突出显示。
首先,我们把它从开启列表中取出,放入关闭列表(这就是他被蓝色突出显示的原因)。然后我们检查相邻的格子。哦,右侧的格子是墙,所以我们略过。左侧的格子是起始格。它在关闭列表里,所以我们也跳过它。
其他4格已经在开启列表里了,于是我们检查G值来判定,如果通过这一格到达那里,路径是否更好。我们来看选中格子下面的方格。它的G值是14。如果我们从当前格移动到那里,G值就会等于20(到达当前格的G值是10,移动到上面的格子将使得G值增加10)。因为G值20大于14,所以这不是更好的路径。如果你看图,就能理解。与其通过先水平移动一格,再垂直移动一格,还不如直接沿对角线方向移动一格来得简单。
当我们对已经存在于开启列表中的4个临近格重复这一过程的时候,我们发现没有一条路径可以通过使用当前格子得到改善,所以我们不做任何改变。既然我们已经检查过了所有邻近格,那么就可以移动到下一格了。
于是我们检索开启列表,现在里面只有7格了,我们仍然选择其中F值最低的。有趣的是,这次,有两个格子的数值都是54。我们如何选择?这并不麻烦。从速度上考虑,选择最后添加进列表的格子会更快捷。这种导致了寻路过程中,在靠近目标的时候,优先使用新找到的格子的偏好。但这无关紧要。(对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径。)
那我们就选择起始格右下方的格子,如图。
这次,当我们检查相邻格的时候,发现右侧是墙,于是略过。上面一格也被略过。我们也略过了墙下面的格子。为什么呢?因为你不能在不穿越墙角的情况下直接到达那个格子。你的确需要先往下走然后到达那一格,按部就班的走过那个拐角。(注解:穿越拐角的规则是可选的。它取决于你的节点是如何放置的。)
这样一来,就剩下了其他5格。当前格下面的另外两个格子目前不在开启列表中,于是我们添加他们,并且把当前格指定为他们的父节点。其余3格,两个已经在关闭列表中(起始格,和当前格上方的格子,在表格中蓝色高亮显示),于是我们略过它们。最后一格,在当前格的左侧,将被检查通过这条路径,G值是否更低。不必担心,我们已经准备好检查开启列表中的下一格了。
我们重复这个过程,直到目标格被添加进关闭列表(注解),就如在下面的图中所看到的。
注意,起始格下方格子的父节点已经和前面不同的。之前它的G值是28,并且指向右上方的格子。现在它的G值是20,指向它上方的格子。这在寻路过程中的某处发生,当应用新路径时,G值经过检查变得低了-于是父节点被重新指定,G和F值被重新计算。尽管这一变化在这个例子中并不重要,在很多场合,这种变化会导致寻路结果的巨大变化。
那么,我们怎么确定这条路径呢?很简单,从红色的目标格开始,按箭头的方向朝父节点移动。这最终会引导你回到起始格,这就是你的路径!看起来应该像图中那样。从起始格A移动到目标格B只是简单的从每个格子(节点)的中点沿路径移动到下一个,直到你到达目标点。就这么简单。
A*方法总结
好,现在你已经看完了整个说明,让我们把每一步的操作写在一起:
#include<iostream> #include<list> #include<queue> #include<vector> #include<cmath> #include<cstring> #include<iterator> #include<random> using namespace std; const int MAP_W = 30; const int MAP_H = 30; const int WEIGHT_STARIGHT = 10; const int WEIGHT_SLANT = 14; const char STATE_NONE = '0'; //0未被访问的可达节点 const char STATE_BARRIER = '1';//1障碍 const char STATE_OPEN = '2';//2开放列表中 const char STATE_CLOSE = '3';//3关闭列表中 char MAP[MAP_W][MAP_H + 1]; char stateList[MAP_W][MAP_H + 1];//状态表 0未被访问的可达节点 1障碍 2开放列表中 3关闭列表中 int barrierList[][2] = { {0,5}, {1,5}, {2,5}, {3,5}, {4,5}, {5,5}, {6,5}, {7,5}, {8, 5}, {9,5}, {7,8}, {8,8}, {9,8}, {10,8}, {11,8}, {12,8}, {13,8}, {14,8}, {15,8}, {13,10}, {14,10}, {15,10}, {16,10}, {17,10}, {18,10}, {19,10}, {20,10}, {21,10}, {22,10}, {14, 4}, {14,5}, {14,6}, {14,7}, {14,8}, {14,9}, {14,10}, {14,11}, {14,12}, {14,13}, {14,14}, {14,15}, {14,16}, {14,17}, {10, 4}, {10,5}, {10,6}, {30,7}, {10,8}, {10,9}, {10,10}, {10,11}, {10,12}, {10,13}, {10,14}, {10,15}, {10,16}, {10,17}, {8, 14}, {8,15}, {8,16}, {8,17}, {8,18}, {8,19}, {8,20}, {8,21}, {8,22}, {8,23}, {8,24} }; void creatRandombarrier(int w, int h, int num) { default_random_engine e; uniform_int_distribution<unsigned> u(0, max(w, h)); for (int i = 0; i < num; i++) { int x = u(e) % w, y = u(e) % h; MAP[x][y] = STATE_BARRIER; } } void initMap(int num) { for (int i = 0; i < MAP_W; i++) { for (int j = 0; j < MAP_H; j++) MAP[i][j] = STATE_NONE; } // for(int i = 0; i < len; i++) { // MAP[barrierList[i][0]][barrierList[i][1]] = STATE_BARRIER; // } //创建随机障碍 creatRandombarrier(MAP_W, MAP_H, num); } struct OpenPoint { int x, y; int cost;//耗费值 int F;//预测值 OpenPoint* father;//父节点 OpenPoint() = default; OpenPoint(int x, int y, int endx, int endy, int cost, OpenPoint* father) :x(x), y(y), cost(cost), father(father) { //启发函数,估计到达目标点的距离 F int relativeX = abs(endx - x); int relativeY = abs(endy - y); int n = abs(relativeX - relativeY); F = max(relativeX, relativeY) * 14 - n * 4 + cost; // F = relativeX + relativeY + cost; } }; //定义优先队列的比较方法 小根堆 struct cmp { bool operator() (OpenPoint* a, OpenPoint* b) { return a->F > b->F; } }; //开启列表 priority_queue<OpenPoint*, vector<OpenPoint*>, cmp> openList; //int depth = 0; //记录深度 //const int depthLimit = 2000; //深度限制 vector<OpenPoint*> pointList;//保存创建的节点 void initStateList() { for (int i = 0; i < MAP_W; i++) { strcpy_s(stateList[i], MAP[i]); } } inline OpenPoint* getPointFromPointList(int x, int y) { OpenPoint* p = nullptr; for (int i = pointList.size(); i >= 0; i--) { p = pointList.at(i); if (p->x == x && p->y == y) { return p; } } return nullptr; } inline OpenPoint* createOpenPoint(int x, int y, int endx, int endy, int cost, OpenPoint* father) { if (x < 0 || y < 0 || x >= MAP_W || y >= MAP_H) return nullptr; // OpenPoint* p = getPointFromPointList(x, y); // if(p == nullptr) { pointList.push_back(new OpenPoint(x, y, endx, endy, cost, father)); return pointList.back(); // }else { // p->father = father; // p->cost = cost; // return p; // } } bool isValidPoint(int x, int y) { if (x < 0 || y < 0 || x >= MAP_W || y >= MAP_H) return false; return true; } // 右 下 左 上 右下 左下 左上 右上 int direction[8][2] = { {0, 1}, {1, 0}, {0, -1}, {-1, 0}, {1,1}, {1,-1}, {-1,-1}, {-1,1} }; void open(OpenPoint* pointToOpen, int endX, int endY) { //上下左右 for (int i = 0; i < 4; i++) { //获取下一个子节点坐标 int toOpenX = pointToOpen->x + direction[i][0]; int toOpenY = pointToOpen->y + direction[i][1]; //判断是否是合法节点 if (isValidPoint(toOpenX, toOpenY)) //判断节点是否未被访问过or在开启列表中 if (stateList[toOpenX][toOpenY] == STATE_NONE || stateList[toOpenX][toOpenY] == STATE_OPEN) { //如果是未被访问过则加入开启列表 //如果已经在开启列表中则比较当前到达该点的花费new cost于old cost,如果当前的花费更小则跟新花费为new cost,并把父指针指向当前节点。 //这里考虑到优先队列的特殊性,可直接创建一个新的节点加入到开启列表 openList.push(createOpenPoint(toOpenX, toOpenY, endX, endY, pointToOpen->cost + WEIGHT_STARIGHT, pointToOpen)); //将该点的状态改为在开启列表中 stateList[toOpenX][toOpenY] = STATE_OPEN; } } //右下 左下 左上 右上 //同理 for (int i = 4; i < 8; i++) { int toOpenX = pointToOpen->x + direction[i][0]; int toOpenY = pointToOpen->y + direction[i][1]; if (isValidPoint(toOpenX, toOpenY)) //如果对角线的左边或右边是障碍则无法从对角线通过 if (stateList[toOpenX][pointToOpen->y] != STATE_BARRIER && stateList[pointToOpen->x][toOpenY] != STATE_BARRIER) { if (stateList[toOpenX][toOpenY] == STATE_NONE || stateList[toOpenX][toOpenY] == STATE_OPEN) { openList.push(createOpenPoint(toOpenX, toOpenY, endX, endY, pointToOpen->cost + WEIGHT_SLANT, pointToOpen)); stateList[toOpenX][toOpenY] = STATE_OPEN; } } } } //A*寻路 vector<OpenPoint*> searchWay(int startX, int startY, int endX, int endY) { //保存寻到目标后的路径节点 vector<OpenPoint*> path; //将起始节点放入开启列表 openList.push(createOpenPoint(startX, startY, endX, endY, 0, nullptr)); //访问开启列表中预测值F最小的节点 OpenPoint* toOpen = nullptr; while (!openList.empty()) { toOpen = openList.top(); //如果找到目标点则保存最短路径,停止搜索 if (toOpen->x == endX && toOpen->y == endY) { for (auto rs = toOpen; rs != nullptr; rs = rs->father) path.push_back(rs); break; } // depth++; // if(depth >= depthLimit) { // toOpen = nullptr; // break; // } //将toOpen从开启列表中移除并标记为关闭状态 openList.pop(); stateList[toOpen->x][toOpen->y] = STATE_CLOSE; //将toOpen的所有可达子节点加入到开启列表中 open(toOpen, endX, endY); } return path; } //打印地图 void printMAP() { cout << "\nMAP:\n"; for (int i = 0; i < MAP_W; i++) { cout << MAP[i] << endl; } } //打印状态表 void printStateList() { cout << "\nStateList:\n"; for (int i = 0; i < MAP_W; i++) { cout << stateList[i] << endl; } } int main() { //起点 int beginX = 3, beginY = 2; //终点 int endX = 28, endY = 28; //初始化地图 initMap(400); //初始化状态表 initStateList(); //确保起点和终点不是障碍、为未被访问状态 MAP[beginX][beginY] = STATE_NONE; MAP[endX][endY] = STATE_NONE; stateList[beginX][beginY] = STATE_NONE; stateList[endX][endY] = STATE_NONE; //开启A*寻路 返回路径列表 vector<OpenPoint*> path = searchWay(beginX, beginY, endX, endY); //将路径显示在地图上 vector<OpenPoint*>::iterator iter; for (iter = path.begin(); iter != path.end(); iter++) { MAP[(*iter)->x][(*iter)->y] = '#'; // cout << "(" << (*iter)->x << "," << (*iter)->y << ")\n"; } printMAP(); printStateList(); if (path.empty()) { cout << "Unable to reach the target point!!!\n"; } else { cout << "finded way!!!\n"; cout << "pointList size:" << pointList.size() << endl; cout << "openList size:" << openList.size() << endl; } return 0; }
#号代表路径,起点(3, 2),终点(28,28),0代表可通行,1代表障碍,2代表在开启列表中,3代表在关闭列表中。
状态表:
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。