当前位置:   article > 正文

python之Numpy数组操作_数组对象的 shape 属性可用于查看维数,返回一个包含数组维度的元组。元组的长度即

数组对象的 shape 属性可用于查看维数,返回一个包含数组维度的元组。元组的长度即

数组操作

更改形状
  • numpy.ndarray.shape表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。
    可以通过改变shape属性来改变数组的形状。
x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape)  # (8,)
x.shape = [2, 4]
print(x)
# [[1 2 9 4]
#  [5 6 7 8]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • numpy.ndarray.flat将数组转换为一维的迭代器,可以用for访问数组每一个元素。
x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = x.flat
print(y)
# <numpy.flatiter object at 0x0000020F9BA10C60>
for i in y:
    print(i, end=' ')
# 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • numpy.ndarray.flatten([order='c'])将数组的副本转换为一维数组,并返回。
    order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序。flatten()函数返回的是拷贝
  • numpy.ravel(a, order='C')Return a contiguous flattened array.
    返回的是视图
x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.ravel(x)
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#  35]

y[3] = 0
print(x)
# [[11 12 13  0 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • numpy.reshape(a, newshape[, order='C'])在不更改数据的情况下为数组赋予新的形状。
    reshape()函数当参数newshape = [rows,-1]时,将根据行数自动确定列数
x = np.arange(12)
y = np.reshape(x, [3, 4])
print(y.dtype)  # int32
print(y)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]

y = np.reshape(x, [3, -1])
print(y)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

reshape()函数当参数newshape = -1时,表示将数组降为一维

x = np.random.randint(12, size=[2, 2, 3])
print(x)
# [[[11  9  1]
#   [ 1 10  3]]
# 
#  [[ 0  6  1]
#   [ 4 11  3]]]
y = np.reshape(x, -1)
print(y)
# [11  9  1  1 10  3  0  6  1  4 11  3]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
数组转置

-numpy.transpose(a, axes=None)Permute the dimensions of an array.
-numpy.ndarray.T Same as self.transpose(),except that self is returned if self.ndim < 2.转置

x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[6.74 8.46 6.74 5.45 1.25]
#  [3.54 3.49 8.62 1.94 9.92]
#  [5.03 7.22 1.6  8.7  0.43]
#  [7.5  7.31 5.69 9.67 7.65]
#  [1.8  9.52 2.78 5.87 4.14]]
y = x.T
print(y)
# [[6.74 3.54 5.03 7.5  1.8 ]
#  [8.46 3.49 7.22 7.31 9.52]
#  [6.74 8.62 1.6  5.69 2.78]
#  [5.45 1.94 8.7  9.67 5.87]
#  [1.25 9.92 0.43 7.65 4.14]]
y = np.transpose(x)
print(y)
# [[6.74 3.54 5.03 7.5  1.8 ]
#  [8.46 3.49 7.22 7.31 9.52]
#  [6.74 8.62 1.6  5.69 2.78]
#  [5.45 1.94 8.7  9.67 5.87]
#  [1.25 9.92 0.43 7.65 4.14]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
更改维度

-numpy.newaxis = None None的别名,对索引数组很有用

x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape)  # (8,)
print(x)  # [1 2 9 4 5 6 7 8]

y = x[np.newaxis, :]
print(y.shape)  # (1, 8)
print(y)  # [[1 2 9 4 5 6 7 8]]

y = x[:, np.newaxis]
print(y.shape)  # (8, 1)
print(y)
# [[1]
#  [2]
#  [9]
#  [4]
#  [5]
#  [6]
#  [7]
#  [8]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • numpy.squeeze(a, axis=None)从数组的形状中删除单维度条目,即把shape中为1的维度去掉。
  • axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
数组组合

将两份数据组合到一起,需要拼接操作。

-numpy.concatenate((a1, a2, ...), axis=0, out=None)
-numpy.stack(arrays, axis=0, out=None)沿着新的轴加入一系列数组(stack为增加维度的拼接)

-numpy.vstack(tup)Stack arrays in sequence vertically (row wise).
-numpy.hstack(tup)Stack arrays in sequence horizontally (column wise)
hstack(),vstack()分别表示水平和竖直的拼接方式。在数据维度等于1时,比较特殊。而当维度大于或等于2时,它们的作用相当于concatenate,用于在已有轴上进行操作。

数组拆分
  • numpy.split(ary, indices_or_sections, axis=0)
x = np.array([[11, 12, 13, 14],
              [16, 17, 18, 19],
              [21, 22, 23, 24]])
y = np.split(x, [1, 3])
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19],
#        [21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)]

y = np.split(x, [1, 3], axis=1)
print(y)
# [array([[11],
#        [16],
#        [21]]), array([[12, 13],
#        [17, 18],
#        [22, 23]]), array([[14],
#        [19],
#        [24]])]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

indices_or_sections这个数可以是整数或数组,整数的话就平均划分,数组的话,数组的每个值就是划分的索引。

  • numpy.vsplit(ary, indices_or_sections)Split an array into multiple sub-arrays vertically (row-wise)垂直切分是把数组按照高度切分
x = np.array([[11, 12, 13, 14],
              [16, 17, 18, 19],
              [21, 22, 23, 24]])
y = np.vsplit(x, 3)
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])]

y = np.vsplit(x, [1, 3])
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19],
#        [21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)]
y = np.split(x, [1, 3], axis=0)
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19],
#        [21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • numpy.hsplit(ary, indices_or_sections)Split an array into multiple sub-arrays horizontally (column-wise).水平切分是把数组按照宽度切分。
x = np.array([[11, 12, 13, 14],
              [16, 17, 18, 19],
              [21, 22, 23, 24]])
y = np.hsplit(x, 2)
print(y)
# [array([[11, 12],
#        [16, 17],
#        [21, 22]]), array([[13, 14],
#        [18, 19],
#        [23, 24]])]

y = np.hsplit(x, [1, 3])
print(y)
# [array([[11],
#        [16],
#        [21]]), array([[12, 13],
#        [17, 18],
#        [22, 23]]), array([[14],
#        [19],
#        [24]])]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
数组平铺
  • numpy.tile(A, reps)Construct an array by repeating A the number of times given by reps.将原矩阵横向、纵向地复制。
    A指待输入数组,reps则决定A重复的次数。整个函数用于重复数组A来构建新的数组.
x = np.array([[1, 2], [3, 4]])
print(x)
# [[1 2]
#  [3 4]]

y = np.tile(x, (1, 3))
print(y)
# [[1 2 1 2 1 2]
#  [3 4 3 4 3 4]]

y = np.tile(x, (3, 1))
print(y)
# [[1 2]
#  [3 4]
#  [1 2]
#  [3 4]
#  [1 2]
#  [3 4]]

y = np.tile(x, (3, 3))
print(y)
# [[1 2 1 2 1 2]
#  [3 4 3 4 3 4]
#  [1 2 1 2 1 2]
#  [3 4 3 4 3 4]
#  [1 2 1 2 1 2]
#  [3 4 3 4 3 4]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • numpy.repeat(a, repeats, axis=None)Repeat elements of an array.
    axis=0,沿着y轴复制,实际上增加了行数。
    axis=1,沿着x轴复制,实际上增加了列数。
    repeats,可以为一个数,也可以为一个矩阵。
    axis=None时就会flatten当前矩阵,实际上就是变成了一个行向量。
x = np.repeat(3, 4)
print(x)  # [3 3 3 3]

x = np.array([[1, 2], [3, 4]])
y = np.repeat(x, 2)
print(y)
# [1 1 2 2 3 3 4 4]

y = np.repeat(x, 2, axis=0)
print(y)
# [[1 2]
#  [1 2]
#  [3 4]
#  [3 4]]

y = np.repeat(x, 2, axis=1)
print(y)
# [[1 1 2 2]
#  [3 3 4 4]]

y = np.repeat(x, [2, 3], axis=0)
print(y)
# [[1 2]
#  [1 2]
#  [3 4]
#  [3 4]
#  [3 4]]

y = np.repeat(x, [2, 3], axis=1)
print(y)
# [[1 1 2 2 2]
#  [3 3 4 4 4]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

数组的话,就是分别重复n次

添加和删除元素

-numpy.unique(ar, return_index=False, return_inverse=False,return_counts=False, axis=None) 对于一维数组或者列表,unique函数去除其中重复的元素,并按元素由大到小返回一个新的无元素重复的元组或者列表
return_index:the indices of the input array that give the unique values
return_inverse:the indices of the unique array that reconstruct the input array
return_counts:the number of times each unique value comes up in the input array*
举个例子:
查找数组的唯一元素:

a=np.array([1,1,2,3,3,4,4])
b=np.unique(a,return_counts=True)
print(b[0][list(b[1]).index(1)])
#2
  • 1
  • 2
  • 3
  • 4
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/293613
推荐阅读
相关标签
  

闽ICP备14008679号