当前位置:   article > 正文

springboot整合elasticsearch_elasticsearchresttemplate不推荐

elasticsearchresttemplate不推荐

前言

从 Elasticsearch 7 开始不推荐使用 TransportClient,并将在 Elasticsearch 8 中将其删除。Spring Data Elasticsearch 也支持 TransportClient,前提是使用的 Elasticsearch 中可用,Spring Data Elasticsearch 从 4.0 版本开始已弃用使用 TransportClient 的类。现在 High Level REST Client 是 Elasticsearch 的默认客户端,它在接受并返回完全相同的请求/响应对象时直接替代 TransportClient。

ElasticsearchRestTemplate 是 Spring Data Elasticsearch 项目中的一个类,和其他 spring 项目中的 template 类似。在新版的 Spring Data Elasticsearch 中,ElasticsearchRestTemplate 代替了原来的 ElasticsearchTemplate。原因是 ElasticsearchTemplate 基于 TransportClient,TransportClient 即将在 8.x 以后的版本中移除。ElasticsearchRestTemplate 基于 RestHighLevelClient,如果不手动配置 ElasticsearchRestTemplate 将使用默认配置的 RestHighLevelClientbaen,此时 ES 服务器应当使用默认 9200 端口。

版本选择

首先说一下,es的版本号很重要,版本号不对,各种失败。我是先装的es,kibana,后新建的项目,结果启动报错,日志写着用高版本es,直接重装了又。
我的spring-boot-starter-parent是2.4.5版本,对应的es是7.9.3,启动的时候会有日志显示。
版本如何选择呢?

比如说springboot版本选择为

 <version>2.3.0.RELEASEversion> 
  • 1

然后在项目的External Libraries中搜索elasticsearch,可以发现elasticsearch-7.6.2.jar这个依赖;

打开其中的MANIFEST.MF文件,通过jar包中的X-Compile-Elasticsearch-Version属性,我们可以找到兼容的Elasticsearch版本号为7.6.2;

还有一点值得注意的是,如果你使用了中文分词器(IK Analysis),也要选择对应的版本7.6.2,对于使用Kibana和Logstash也是如此。

参考项目源码地址

https://github.com/macrozheng/mall-learning/tree/master/mall-tiny-elasticsearch

pom


    <properties>
        <java.version>1.8</java.version>
        <elasticsearch.version>7.6.1</elasticsearch.version>
    </properties>
    <dependencies>
        <!--        解析网页jsoup-->
        <dependency>
            <groupId>org.jsoup</groupId>
            <artifactId>jsoup</artifactId>
            <version>1.13.1</version>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-thymeleaf</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.66</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

配置

spring:
elasticsearch:
rest:
uris: 127.0.0.1:9200

如下配置也可
spring:
data:
elasticsearch:
client:
reactive:
endpoints: 127.0.0.1:9200

实体类

SpringBoot 有为我们提供多种方式设置mapping,你可以按喜好选择使用,使用@Mapping注解配置,使用es原生的方式进行设置,虽然有点小麻烦,但是更加直观了,也不仅限于java,也可以直接用curl或es控制台创建。
film-mapping.json

注解实现

@Data
@AllArgsConstructor
@NoArgsConstructor
@Document(indexName = "my_book")
public class Book {
    @Id
    private Long id;

    @Field(type = FieldType.Text, analyzer = "ik_smart")
    private String title;

    @Field(type = FieldType.Keyword)
    private String author;

    @Field(type = FieldType.Text, analyzer = "ik_smart")
    private String desc;

    @Field(type = FieldType.Integer)
    private Integer pageNum;

    @Field(type = FieldType.Date)
    private Date createDate;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

配置文件 mapping实现

@Document(indexName = "film-entity", type = "film")
@Setting(settingPath = "/json/film-setting.json")
@Mapping(mappingPath = "/json/film-mapping.json")
public class FilmEntity {

    @Id
    private Long id;
//    @Field(type = FieldType.Text, searchAnalyzer = "ik_max_word", analyzer = "ik_smart")
    private String name;
    private String nameOri;
    private String publishDate;
    private String type;
    private String language;
    private String fileDuration;
    private String director;
//    @Field(type = FieldType.Date)
    private Date created ;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getNameOri() {
        return nameOri;
    }

    public void setNameOri(String nameOri) {
        this.nameOri = nameOri;
    }

    public String getPublishDate() {
        return publishDate;
    }

    public void setPublishDate(String publishDate) {
        this.publishDate = publishDate;
    }

    public String getType() {
        return type;
    }

    public void setType(String type) {
        this.type = type;
    }

    public String getLanguage() {
        return language;
    }

    public void setLanguage(String language) {
        this.language = language;
    }

    public String getFileDuration() {
        return fileDuration;
    }

    public void setFileDuration(String fileDuration) {
        this.fileDuration = fileDuration;
    }

    public String getDirector() {
        return director;
    }

    public void setDirector(String director) {
        this.director = director;
    }

    public Date getCreated() {
        return created;
    }

    public void setCreated(Date created) {
        this.created = created;
    }

    public Long getId() {
        return id;
    }

    public void setId(Long id) {
        this.id = id;
    }

    @Override
    public String toString() {
        return "FilmEntity [id=" + id + ", name=" + name + ", director=" + director + "]";
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
{
  "film": {
    "_all": {
      "enabled": true
    },
    "properties": {
      "id": {
        "type": "integer"
      },
      "name": {
        "type": "text",
        "analyzer": "ikSearchAnalyzer",
        "search_analyzer": "ikSearchAnalyzer",
        "fields": {
          "pinyin": {
            "type": "text",
            "analyzer": "pinyinSimpleIndexAnalyzer",
            "search_analyzer": "pinyinSimpleIndexAnalyzer"
          }
        }
      },
      "nameOri": {
        "type": "text"
      },
      "publishDate": {
        "type": "text"
      },
      "type": {
        "type": "text"
      },
      "language": {
        "type": "text"
      },
      "fileDuration": {
        "type": "text"
      },
      "director": {
        "type": "text",
        "index": "true",
        "analyzer": "ikSearchAnalyzer"
      },
      "created": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
      }
    }
  }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

另外,除了@Mapping,SpringBoot还为我们提供了另一强大的注解@Setting,该注解可以让我们为当前索引设置一些相关属性,相当于
elasticsearch中的settings配置,例如:
film-setting.json

(IK分词+拼音分词的配置)

{
  "index": {
    "analysis": {
      "filter": {
        "edge_ngram_filter": {
          "type": "edge_ngram",
          "min_gram": 1,
          "max_gram": 50
        },
        "pinyin_simple_filter": {
          "type": "pinyin",
          "first_letter": "prefix",
          "padding_char": " ",
          "limit_first_letter_length": 50,
          "lowercase": true
        }
      },
      "char_filter": {
        "tsconvert": {
          "type": "stconvert",
          "convert_type": "t2s"
        }
      },
      "analyzer": {
        "ikSearchAnalyzer": {
          "type": "custom",
          "tokenizer": "ik_max_word",
          "char_filter": [
            "tsconvert"
          ]
        },
        "pinyinSimpleIndexAnalyzer": {
          "tokenizer": "keyword",
          "filter": [
            "pinyin_simple_filter",
            "edge_ngram_filter",
            "lowercase"
          ]
        }
      }
    }
  }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

上面的JSON作用是创建两个分析器名为ikSearchAnalyzer,pinyinSimpleIndexAnalyzer,前者使用ik中文分词器加繁体转简体char_filter过滤,使得引用此分词器的字段在设置时,将会自动对中文进行分词和繁简体转换。
pinyinSimpleIndexAnalyzer 使用pinyin分词器,并进行edge_ngram 过滤,大写转小写过滤

注解

说明

@Document

作用在类,标记实体类为文档对象 indexName:对应索引库名称 type:对应在索引库中的类型,8.x 将删除 shards:分片数量,默认 5 replicas:副本数量,默认 1

@Id

作用在成员变量,标记一个字段作为 id 主键

@Field

作用在成员变量,标记为文档的字段,并指定字段映射属性: type:字段类型,是枚举:FieldType,可以是 text、long、short、date、integer、object 等 index:是否索引,布尔类型,默认是true store:是否存储,布尔类型,默认是 false analyzer:分词器名称

测试索引库操作 创建索引,删除索引


@SpringBootTest
public class SpringDataEsTest {

    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void create() {
        // 根据 @Document 注解创建索引
        elasticsearchRestTemplate.createIndex(Book.class);
        // 更具 @Field 注解创建 Mapping
        elasticsearchRestTemplate.putMapping(Book.class);
    }

    @Test
    public void delete() {
        // 根据字节码删除
        elasticsearchRestTemplate.deleteIndex(Book.class);
        // 根据索引名删除
        elasticsearchRestTemplate.deleteIndex("my_book");
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

这些操作已经不被推荐使用,已经加上删除线了。这些操作其实是 ElasticsearchTemplate 的过度,在 ElasticsearchRestTemplate 中不需要我们自己去创建索引,首次创建 ElasticsearchRestTemplate 时会帮我们自动根据实体类来创建索引。

Document这个是属于es包下面的注解,indexName就是索引名称,默认createIndex=true,即没有该索引,会创建。

添加/修改文档

@SpringBootTest
public class SpringDataEsTest {

    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void save() {
        // 准备数据,id 相同即为修改
        Book book = new Book(Long.parseLong("1"), "民法典", "人大", "666666", 100, new Date());

        elasticsearchRestTemplate.save(book);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

删除文档

@SpringBootTest
public class SpringDataEsTest {

    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void delete() {
        // 准备数据
        Book book = new Book(Long.parseLong("1"), "民法典", "人大", "666", 100, new Date());
        
        // 根据对象删除数据
        elasticsearchRestTemplate.delete(book);
        // 根据 id + Class 删除数据
        elasticsearchRestTemplate.delete("1", Book.class);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

查询

先看一下这个例子

@RunWith(SpringRunner.class)
@SpringBootTest
public class EsArticleControllerTest {
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void test1() {
        NativeSearchQuery nativeSearchQuery = new NativeSearchQueryBuilder()
                //查询条件
                .withQuery(QueryBuilders.queryStringQuery("浦东开发开放").defaultField("title"))
                //分页
                .withPageable(PageRequest.of(0, 5))
                //排序
                .withSort(SortBuilders.fieldSort("id").order(SortOrder.DESC))
                //高亮字段显示
                .withHighlightFields(new HighlightBuilder.Field("浦东"))
                .build();
        List<ArticleEntity> articleEntities = elasticsearchRestTemplate.queryForList(nativeSearchQuery, ArticleEntity.class);
        articleEntities.forEach(item -> System.out.println(item.toString()));
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

这个方法是根据指定的title模糊查询一个列表,其中用到了几个关键类,说明一下:

elasticsearchRestTemplate.queryForList是查询一个列表,用的就是ElasticsearchRestTemplate的一个对象实例;
NativeSearchQuery :是springdata中的查询条件;
NativeSearchQueryBuilder :用于建造一个NativeSearchQuery查询对象;
QueryBuilders :设置查询条件,是ES中的类;
SortBuilders :设置排序条件;
HighlightBuilder :设置高亮显示;
下面分类具体介绍下。

NativeSearchQuery

这是一个原生的查询条件类,用来和ES的一些原生查询方法进行搭配,实现一些比较复杂的查询。

//查询条件,查询的时候,会考虑关键词的匹配度,并按照分值进行排序
private QueryBuilder query;
//查询条件,查询的时候,不考虑匹配程度以及排序这些事情
private QueryBuilder filter;
//排序条件的builder
private List<SortBuilder> sorts;
private final List<ScriptField> scriptFields = new ArrayList<>();
private CollapseBuilder collapseBuilder;
private List<FacetRequest> facets;
private List<AbstractAggregationBuilder> aggregations;
//高亮显示的builder
private HighlightBuilder highlightBuilder;
private HighlightBuilder.Field[] highlightFields;
private List<IndexBoost> indicesBoost;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

内部属性,基本上都是ES的一些内部对象:

QueryBuilders

QueryBuilders是ES中的查询条件构造器。

精确查询

精确,指的是查询关键字(或者关键字分词后),必须与目标分词结果完全匹配。

1.指定字符串作为关键词查询,关键词支持分词

//查询title字段中,包含 ”开发”、“开放" 这个字符串的document;相当于把"浦东开发开放"分词了,再查询;
QueryBuilders.queryStringQuery(“开发开放”).defaultField(“title”);
//不指定feild,查询范围为所有feild
QueryBuilders.queryStringQuery(“青春”);
//指定多个feild
QueryBuilders.queryStringQuery(“青春”).field(“title”).field(“content”);

2.以关键字“开发开放”,关键字不支持分词

QueryBuilders.termQuery(“title”, “开发开放”)
QueryBuilders.termsQuery(“fieldName”, “fieldlValue1”,“fieldlValue2…”)

3.以关键字“开发开放”,关键字支持分词

QueryBuilders.matchQuery(“title”, “开发开放”)
QueryBuilders.multiMatchQuery(“fieldlValue”, “fieldName1”, “fieldName2”, “fieldName3”)

模糊查询

模糊,是指查询关键字与目标关键字可以模糊匹配。

1.左右模糊查询,其中fuzziness的参数作用是在查询时,es动态的将查询关键词前后增加或者删除一个词,然后进行匹配

QueryBuilders.fuzzyQuery(“title”, “开发开放”).fuzziness(Fuzziness.ONE)

2.前缀查询,查询title中以“开发开放”为前缀的document;

QueryBuilders.prefixQuery(“title”, “开发开放”)

3.通配符查询,支持*和?,?表示单个字符;注意不建议将通配符作为前缀,否则导致查询很慢

QueryBuilders.wildcardQuery(“title”, “开*放”)
QueryBuilders.wildcardQuery(“title”, “开?放”)

注意,
在分词的情况下,针对fuzzyQuery、prefixQuery、wildcardQuery不支持分词查询,即使有这种doucment数据,也不一定能查出来,因为分词后,不一定有“开发开放”这个词;

范围查询

//闭区间查询
QueryBuilders.rangeQuery(“fieldName”).from(“fieldValue1”).to(“fieldValue2”);
//开区间查询,默认是true,也就是包含
QueryBuilders.rangeQuery(“fieldName”).from(“fieldValue1”).to(“fieldValue2”).includeUpper(false).includeLower(false);
//大于
QueryBuilders.rangeQuery(“fieldName”).gt(“fieldValue”);
//大于等于
QueryBuilders.rangeQuery(“fieldName”).gte(“fieldValue”);
//小于
QueryBuilders.rangeQuery(“fieldName”).lt(“fieldValue”);
//小于等于
QueryBuilders.rangeQuery(“fieldName”).lte(“fieldValue”);

多个关键字组合查询boolQuery()

QueryBuilders.boolQuery()
QueryBuilders.boolQuery().must();//文档必须完全匹配条件,相当于and
QueryBuilders.boolQuery().mustNot();//文档必须不匹配条件,相当于not
QueryBuilders.boolQuery().should();//至少满足一个条件,这个文档就符合should,相当于or

具体demo如下:

public void testBoolQuery() {
NativeSearchQuery nativeSearchQuery = new NativeSearchQueryBuilder()
.withQuery(QueryBuilders.boolQuery()
.should(QueryBuilders.termQuery(“title”, “开发”))
.should(QueryBuilders.termQuery(“title”, “青春”))
.mustNot(QueryBuilders.termQuery(“title”, “潮头”))
)
.withSort(SortBuilders.fieldSort(“id”).order(SortOrder.DESC))
.withPageable(PageRequest.of(0, 50))
.build();
List articleEntities = elasticsearchRestTemplate.queryForList(nativeSearchQuery, ArticleEntity.class);
articleEntities.forEach(item -> System.out.println(item.toString()));
}

以上是查询title分词中,包含“开发”或者“青春”,但不能包含“潮头”的document;
也可以多个must组合。

SortBuilders排序

上述demo中,我们使用了排序条件:

//按照id字段降序
.withSort(SortBuilders.fieldSort(“id”).order(SortOrder.DESC))

注意排序时,有个坑,就是在以id排序时,比如降序,结果可能并不是我们想要的。因为根据id排序,es实际上会根据_id进行排序,但是_id是string类型的,排序后的结果会与整型不一致。

建议:
在创建es的索引mapping时,将es的id和业务的id分开,比如业务id叫做myId:

@Id
@Field(type = FieldType.Long, store = true)
private Long myId;

@Field(type = FieldType.Text, store = true, analyzer = “ik_smart”)
private String title;

@Field(type = FieldType.Text, store = true, analyzer = “ik_smart”)
private String content;

这样,后续排序可以使用myId进行排序。

分页

使用如下方式分页:

@Test
public void testPage() {
NativeSearchQuery nativeSearchQuery = new NativeSearchQueryBuilder()
.withQuery(QueryBuilders.matchQuery(“title”, “青春”))
.withSort(SortBuilders.fieldSort(“myId”).order(SortOrder.DESC))
.withPageable(PageRequest.of(0, 50))
.build();
AggregatedPage page = elasticsearchRestTemplate.queryForPage(nativeSearchQuery, ArticleEntity.class);
List articleEntities = page.getContent();
articleEntities.forEach(item -> System.out.println(item.toString()));
}

注意,如果不指定分页参数,es默认只显示10条。

高亮显示

查询title字段中的关键字,并高亮显示:

@Test
public void test() {
String preTag = “”;
String postTag = “
”;
NativeSearchQuery nativeSearchQuery = new NativeSearchQueryBuilder()
.withQuery(QueryBuilders.matchQuery(“title”, “开发”))
.withPageable(PageRequest.of(0, 50))
.withSort(SortBuilders.fieldSort(“id”).order(SortOrder.DESC))
.withHighlightFields(new HighlightBuilder.Field(“title”).preTags(preTag).postTags(postTag))
.build();

AggregatedPage<ArticleEntity> page = elasticsearchRestTemplate.queryForPage(nativeSearchQuery, ArticleEntity.class,
        new SearchResultMapper() {
            @Override
            public <T> AggregatedPage<T> mapResults(SearchResponse response, Class<T> clazz, Pageable pageable) {
                List<ArticleEntity> chunk = new ArrayList<>();
                for (SearchHit searchHit : response.getHits()) {
                    if (response.getHits().getHits().length <= 0) {
                        return null;
                    }
                    ArticleEntity article = new ArticleEntity();
                    article.setMyId(Long.valueOf(searchHit.getSourceAsMap().get("id").toString()));
                    article.setContent(searchHit.getSourceAsMap().get("content").toString());
                    HighlightField title = searchHit.getHighlightFields().get("title");
                    if (title != null) {
                        article.setTitle(title.fragments()[0].toString());
                    }
                    chunk.add(article);
                }
                if (chunk.size() > 0) {
                    return new AggregatedPageImpl<>((List<T>) chunk);
                }
                return null;
            }

            @Override
            public <T> T mapSearchHit(SearchHit searchHit, Class<T> type) {
                return null;
            }
        });


List<ArticleEntity> articleEntities = page.getContent();
articleEntities.forEach(item -> System.out.println(item.toString()));
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

}

@SpringBootTest
public class SpringDataEsTest {

    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void search() {
        /*
         * 设置 bool 查询
         *  ① 设置查询 BoolQueryBuilder
         *  ② 关键词 must(AND), mustNot(NOT), should(OR)
         *  ③ 查询条件 MatchQueryBuilder 分词查询, TermQueryBuilder 不分词查询
         */
        BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder().must(new MatchQueryBuilder("title", "民法典"));

        /*
         * 设置总查询
         *  ① 设置查询 NativeSearchQueryBuilder
         *  ② 设置查询条件 withQuery(BoolQueryBuilder boolQueryBuilder)
         *  ③ 设置高亮 withHighlightFields(new HighlightBuilder.Field("name").preTags(preTag).postTags(postTag))
         */
        NativeSearchQuery nativeSearchQuery = new NativeSearchQueryBuilder().withQuery(boolQueryBuilder).build();

        // 查询
        SearchHits<Book> searchHits = elasticsearchRestTemplate.search(nativeSearchQuery, Book.class);

        // 遍历查询结果
        for (SearchHit<Book> searchHit : searchHits) {
            Book book = searchHit.getContent();
            System.out.println(book);
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
    @GetMapping("/search")
    public String search() {
//        查询全部数据
//        QueryBuilder queryBuilder = QueryBuilders.matchAllQuery();

//        精确查询 =
//        QueryBuilder queryBuilder = QueryBuilders.termQuery("name", "lisi");

//        精确查询 多个 in
//        QueryBuilder queryBuilder = QueryBuilders.termsQuery("name", "张三", "lisi");

//        match匹配,会把查询条件进行分词,然后进行查询,多个词条之间是 or 的关系,可以指定分词
//        QueryBuilder queryBuilder = QueryBuilders.matchQuery("name", "张三");
//        QueryBuilder queryBuilder = QueryBuilders.matchQuery("name", "张三").analyzer("ik_max_word");

//        match匹配 查询多个字段
//        QueryBuilder queryBuilder = QueryBuilders.multiMatchQuery("男", "name", "sex");

//        fuzzy 模糊查询,返回包含与搜索字词相似的字词的文档。
//        QueryBuilder  queryBuilder = QueryBuilders.fuzzyQuery("name","lisx");

//        prefix 前缀检索
//        QueryBuilder  queryBuilder = QueryBuilders.prefixQuery("name","张");

//        wildcard 通配符检索
//        QueryBuilder  queryBuilder = QueryBuilders.wildcardQuery("name","张*");

//        regexp 正则查询
        QueryBuilder queryBuilder = QueryBuilders.regexpQuery("name", "(张三)|(lisi)");
        
//        boost 评分权重,令满足某个条件的文档的得分更高,从而使得其排名更靠前。
        queryBuilder.boost(2);
//        多条件构建
//        BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery();
//        并且 and
//        queryBuilder.must(QueryBuilders.termQuery("name", "张三"));
//        queryBuilder.must(QueryBuilders.termQuery("sex", "女"));

//        或者 or
//        queryBuilder.should(QueryBuilders.termQuery("name", "张三"));
//        queryBuilder.should(QueryBuilders.termQuery("name", "lisi"));

//        不等于,去除
//        queryBuilder.mustNot(QueryBuilders.termQuery("name", "lisi"));

//        过滤数据
//        queryBuilder.filter(QueryBuilders.matchQuery("name", "张三"));

//        范围查询
        /*
            gt 大于 >
            gte 大于等于 >=
            lt 小于 <
            lte 小于等于 <=
        */
//        queryBuilder.filter(new RangeQueryBuilder("age").gt(10).lte(50));

//        构建分页,page 从0开始
        Pageable pageable = PageRequest.of(0, 3);
        
        Query query = new NativeSearchQueryBuilder()
                .withQuery(queryBuilder)
                .withPageable(pageable)
                //排序
                .withSort(SortBuilders.fieldSort("_score").order(SortOrder.DESC))
                //投影
                .withFields("name")
                .build();
        SearchHits<UserEsEntity> search = elasticsearchRestTemplate.search(query, UserEsEntity.class);
        log.info("total: {}", search.getTotalHits());
        Stream<SearchHit<UserEsEntity>> searchHitStream = search.get();
        List<UserEsEntity> list = searchHitStream.map(SearchHit::getContent).collect(Collectors.toList());
        log.info("结果数量:{}", list.size());
        list.forEach(entity -> {
            log.info(entity.toString());
        });
        return "success";
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79

分页查询

	@Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;
    
    @Test
    /** 搜索全部数据 , 分页显示 , 按 balance字段降序 排序 */
    public void test1() {
        // 构建查询条件(搜索全部)
        MatchAllQueryBuilder queryBuilder1 = QueryBuilders.matchAllQuery();
        // 分页
        Pageable pageable = PageRequest.of(0, 5);
        // 排序
        FieldSortBuilder balance = new FieldSortBuilder("balance").order(SortOrder.DESC);
        // 执行查询
        NativeSearchQuery query = new NativeSearchQueryBuilder()
                .withQuery(queryBuilder1)
                .withPageable(pageable)
                .withSort(balance)
                .build();
        SearchHits<Book> searchHits = elasticsearchRestTemplate.search(query, Book.class);

        //封装page对象
        List<EsAccount> accounts = new ArrayList<>();
        for (SearchHit<Book> hit : searchHits) {
            accounts.add(hit.getContent());
        }
        Page<EsAccount> page = new PageImpl<>(accounts,pageable,searchHits.getTotalHits());

        //输出分页对象
        System.out.println(page.getTotalPages());
        System.out.println(page.getTotalElements());
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

组合搜索

@Test
    /** 组合搜索 bool*/
    public void test3() {
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        // must表示同时满足,should满足其中一个,must_not表示同时不满足
        boolQueryBuilder.must(QueryBuilders.matchQuery("address", "mill"));
        boolQueryBuilder.must(QueryBuilders.matchQuery("address", "lane"));

        NativeSearchQuery query = new NativeSearchQueryBuilder()
                .withQuery(boolQueryBuilder)
                .build();

        SearchHits<EsAccount> searchHits = elasticsearchRestTemplate.search(query, EsAccount.class);
        for (SearchHit<EsAccount> hit : searchHits) {
            System.out.println(hit.getContent());
        }
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
@Test
    /** 过滤搜索 */
    public void test4() {
        // 构建条件
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        RangeQueryBuilder balance = QueryBuilders.rangeQuery("balance").gte(20000).lte(30000);
        boolQueryBuilder.filter(balance);

        NativeSearchQuery query = new NativeSearchQueryBuilder()
                .withQuery(boolQueryBuilder)
                .build();

        SearchHits<EsAccount> searchHits = elasticsearchRestTemplate.search(query, EsAccount.class);

        for (SearchHit<EsAccount> hit : searchHits) {
            System.out.println(hit.getContent());
        }
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

前文讲了 ElasticsearchRestTemplate 的简单操作,还有一种是使用 ElasticsearchRepository 它的用法与 SringDataJpa 十分类似。我们只需要写一个 repository 接口继承它就可以使用以下方法去操作 ES。

@Repository
public interface BookRepository extends ElasticsearchRepository<Book, Long> {
}

@SpringBootTest
public class SpringDataEsTest {

    @Autowired
    private BookRepository bookRepository;

    @Test
    public void save() {
        Book book = new Book(Long.parseLong("1"), "斗破苍穹", "天蚕土豆", "斗气的世界", 100, new Date());

        bookRepository.save(book);
    }

    @Test
    public void exist() {
        System.out.println(bookRepository.existsById(Long.parseLong("4")));
    }

    @Test
    public void delete() {
        bookRepository.deleteById(Long.parseLong("4"));
    }

    @Test
    public void findAll() {
        Iterable<Book> books = bookRepository.findAll();
        for (Book book : books) {
            System.out.println(book);
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

商品搜索实际应用

/**

 * @Description: 搜索微服务SkuService接口实现类
 */
@Service
public class SkuEsServiceImpl implements SkuEsService {
 
    @Autowired
    private SkuEsMapper skuEsMapper;
 
    @Autowired
    private SkuFeign skuFeign;
 
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;
 
    @Autowired
    private RestHighLevelClient restHighLevelClient;
 
    /**
     * 将数据库中的全部Sku数据导入ES中
     */
    @Override
    public void importDataToElasticSearch(int start, int end) {
        // 调用Feign,查询List<Sku>
        Result<List<Sku>> skuListResult = skuFeign.findAll(start, end);
 
        // 将List<Sku>转成List<SkuInfo>
        // JSON.toJSONString(skuListResult.getData()): 将skuListResult中的List<Sku>转成json格式
        // JSON.parseArray(): 将json格式的List<Sku>转成List<SkuInfo>集合
        List<SkuInfo> skuInfoList = JSON.parseArray(JSON.toJSONString(skuListResult.getData()), SkuInfo.class);
 
        // 遍历当前skuInfoList
        for (SkuInfo skuInfo : skuInfoList) {
 
            // 获取spec(String类型的Map数据) -> 将其转成 Map类型 ->{'颜色': '梵高星空典藏版', '版本': '8GB+128GB'}
            Map<String, Object> specMap = JSON.parseObject(skuInfo.getSpec(), Map.class);
            // 给skuInfo中的specMap属性赋值
            // 当前Map<String,Object> 的值Object会被作为Sku对象该域(key)对应的值
            skuInfo.setSpecMap(specMap);
        }
 
        // 调用Mapper 实现数据批量导入
        skuEsMapper.saveAll(skuInfoList);
    }
 
 
     
    
        
      
 
   

 
    /**
     * 关键字检索(优化后的搜索方法)
     *
     * @param searchMap
     * @return
     */
    @Override
    public Map<String, Object> search(Map<String, String> searchMap) {
        // 1.封装检索条件(后期有多个检索条件,专门封装一个方法)
        NativeSearchQueryBuilder builder = builderBasicQuery(searchMap);
        // 2.根据关键字检索,获取改关键字下的商品信息
        Map<String, Object> resultMap = searchForPage(builder);
        // 3.商品分类列表
//        List<String> categoryList = searchCategoryList(builder);
//        resultMap.put("categoryList", categoryList);
        // 4.品牌分类列表查询
//        List<String> brandList = searchBrandList(builder);
//        resultMap.put("brandList", brandList);
        // 获取数据的总条数
        String totalElements = resultMap.get("TotalElements").toString();
        int totalSize = Integer.parseInt(totalElements);
        if (totalSize <= 0) {
            //判断totalSize是否小于等于0,如果小于等于0会报角标越界异常,需要给totalSize设置默认值防止报错
            totalSize = 10000;
        }
        // 5.统计规格分类列表
//        Map<String, Set<String>> specList = searchSpecList(builder,totalSize);
//        resultMap.put("specList", specList);
        // 6.将检索的结果封装到map中
        Map<String, Object> map = searchGroupList(builder, totalSize);
        resultMap.putAll(map);
        return resultMap;
    }
    
    /**
     * 统计规格分类列表查询, 品牌分类列表查询 ,商品分类分组统计实现(封装一个方法返回所有检索条件结果返回)
     *
     * @param builder
     * @return
     */
    private Map<String, Object> searchGroupList(NativeSearchQueryBuilder builder, int totalSize) {
        // 聚合查询   (分类)                                       别名                对应kibana中的字段
        builder.addAggregation(AggregationBuilders.terms("skuCategpryName").field("categoryName.keyword").size(totalSize));
        // 聚合查询   (品牌)                                       别名                对应kibana中的字段
        builder.addAggregation(AggregationBuilders.terms("skuBrandName").field("brandName.keyword").size(totalSize));
        // 聚合查询   (品牌)                                       别名                对应kibana中的字段
        builder.addAggregation(AggregationBuilders.terms("skuSpec").field("spec.keyword").size(totalSize));
        // 分组结果集
        SearchHits<SkuInfo> searchHits = elasticsearchRestTemplate.search(builder.build(), SkuInfo.class);
        // 对SearchHits集合进行分页封装
        SearchPage<SkuInfo> page = SearchHitSupport.searchPageFor(searchHits, builder.build().getPageable());
 
        //处理结果集
        Aggregations aggregations = page.getSearchHits().getAggregations();
        // 统计分类
        List<String> categoryList = getGroupList(aggregations, "skuCategpryName");
        // 统计品牌
        List<String> brandList = getGroupList(aggregations, "skuBrandName");
        // 统计规格
        List<String> spceList = getGroupList(aggregations, "skuSpec");
        // 将统计规格的List结果集转成Map返回
        Map<String, Set<String>> specmap = pullMap(spceList);
        // 将所有的数据封装Map
        Map<String, Object> map = new HashMap<>();
        map.put("categoryList", categoryList);
        map.put("brandList", brandList);
        map.put("specMap", specmap);
        // 返回最终结果集
        return map;
    }
 
    /**
     * 处理聚合查询(分类,品牌,品牌)结果集
     *
     * @param
     * @return
     */
    private List<String> getGroupList(Aggregations aggregations, String groupName) {
        Terms terms = aggregations.get(groupName);
        List<String> resultList = new ArrayList<>();
 
        if (terms != null) {
            for (Terms.Bucket bucket : terms.getBuckets()) {
                String keyAsString = bucket.getKeyAsString();// 分组的值(分类名称/品牌名称)
                resultList.add(keyAsString);
            }
        }
        return resultList;
    }
 
    /**
     * 处理规格数据封装Map
     *
     * @param list
     * @return
     */
    private Map<String, Set<String>> pullMap(List<String> list) {
        Map<String, Set<String>> map = new HashMap<>();
        for (String spec : list) {
            // 将字符JSON数据转Map
            Map<String, String> specMap = JSON.parseObject(spec, Map.class);
            // 遍历map
            Set<Map.Entry<String, String>> entrySet = specMap.entrySet();
            for (Map.Entry<String, String> entry : entrySet) {
                // 电视音响效果":
                String key = entry.getKey();
                // 小影院...
                String value = entry.getValue();
                // value是多个且不能重复使用Set集合存储
                // 首先判断map中是否有set
                Set<String> set = map.get(key);
                if (set == null) {
                    // 判断set是否为空,如果是空就new HashSet
                    set = new HashSet<>();
                }
                // set不为空就直接往里面添加数据
                set.add(value);
                map.put(key, set);
            }
        }
        return map;
    }
 
    /**
     * 根据关键字进行检索
     *
     * @param builder
     * @return
     */
    private Map<String, Object> searchForPage(NativeSearchQueryBuilder builder) {
        // 关键字的高亮显示
        // 继续封装检索条件
        HighlightBuilder.Field field = new HighlightBuilder.Field("name");  //sku的name如果有关键字就进行高亮
        field.preTags("<font color='red'>");    // 开始标签
        field.postTags("</font>");              // 结束标签
        field.fragmentSize(100);                // 显示的字符个数
        builder.withHighlightFields(field);
 
        NativeSearchQuery build = builder.build();
        //AggregatedPage<SkuInfo> page = elasticsearchTemplate.queryForPage(build, SkuInfo.class);
        // 分组结果集
        SearchHits<SkuInfo> searchHits = elasticsearchRestTemplate.search(builder.build(), SkuInfo.class);
        // 对SearchHits集合进行分页封装
        SearchPage<SkuInfo> page = SearchHitSupport.searchPageFor(searchHits, builder.build().getPageable());
 
        // 取出高亮的结果数据,在该对象中
        // 遍历: 对返回的内容进行处理(高亮字段替换原来的字段)
        for(SearchHit<SkuInfo> searchHit:searchHits){
            // 获取searchHit中的高亮内容
            Map<String, List<String>> highlightFields = searchHit.getHighlightFields();
            // 将高亮的内容填充到content中
            searchHit.getContent().setName(highlightFields.get("name")==null ? searchHit.getContent().getName():highlightFields.get("name").get(0));
        }
 
        Map<String, Object> map = new HashMap<>();
        // 商品结果集
        map.put("rows", page.getContent());
        //总条数
        map.put("TotalElements", page.getTotalElements());
        //总页数
        map.put("TotalPages", page.getTotalPages());
        // 分页当前页码
        map.put("pageNum", build.getPageable().getPageNumber() + 1);
        // 每页显示条数
        map.put("pageSize", build.getPageable().getPageSize());
 
        return map;
    }
 
    /**
     * 此方法用于封装检索条件NativeSearchQueryBuilder
     *
     * @param searchMap
     * @return
     */
    private NativeSearchQueryBuilder builderBasicQuery(Map<String, String> searchMap) {
        // 封装检索条件
        NativeSearchQueryBuilder builder = new NativeSearchQueryBuilder();
        // 添加过滤条件
        BoolQueryBuilder boolBuilder = new BoolQueryBuilder();
        if (searchMap != null) {
 
            // 1.根据关键字检索
            String keywords = searchMap.get("keywords");
            if (!StringUtils.isEmpty(keywords)) {
                builder.withQuery(QueryBuilders.matchPhraseQuery("name", keywords));
            }
 
            // 继续拼接条件
            // 2.根据商品分类过滤
            String category = searchMap.get("category");
            if (!StringUtils.isEmpty(category)) {
                boolBuilder.must(QueryBuilders.matchPhraseQuery("categoryName", category));
            }
 
            // 3.根据商品品牌过滤
            String brand = searchMap.get("brand");
            if (!StringUtils.isEmpty(brand)) {
                boolBuilder.must(QueryBuilders.matchPhraseQuery("brandName", brand));
            }
 
            // 4.根据商品规格过滤(选择的规格有多个)
            // ::spec_屏幕尺寸 :5.7, spec_内存 :40G
            Set<String> keys = searchMap.keySet();
            for (String key : keys) {
                // 判断规格条件是否是spec_开头的
                if (key.startsWith("spec_")) {
                    String value = searchMap.get(key).replace("\\", "");
                    boolBuilder.must(QueryBuilders.matchQuery("specMap." + key.substring(5) + ".keyword", value));
                }
            }
 
            // 5.根据商品价格过滤(区间段)
            String price = searchMap.get("price");
            if (!StringUtils.isEmpty(price)) {
                // 页面传的价格式(min ~ max / >price /  <price)
                String[] priceArray = price.split("-");
                // 如果传的价格参数是一个就大于(>=)查询
                boolBuilder.must(QueryBuilders.rangeQuery("price").gte(priceArray[0]));
                if (priceArray.length > 1) {
                    // 如果传的价格参数是两个就小于(<=)查询
                    boolBuilder.must(QueryBuilders.rangeQuery("price").lte(priceArray[1]));
                }
            }
 
            // 6.进行排序查询(排序字段,ASC DESC)
            // 排序的字段
            String sortField = searchMap.get("sortField");
            // 排序的规则(ASC DESC)
            String sortRule = searchMap.get("sortRule");
            if (!StringUtils.isEmpty(sortField)) {
                builder.withSort(SortBuilders.fieldSort(sortField).order(SortOrder.valueOf(sortRule)));
            }
        }
        // 7. 将过滤的条件都加到builder中NativeSearchQueryBuilder
        builder.withFilter(boolBuilder);
 
        // 8. 添加分页条件 age1:当前页(page)   age2:每页显示数据(size)
        String page = searchMap.get("pageNum");
        if (StringUtils.isEmpty(page)) {
            // 默认起始页为第一页
            page = "1";
        }
        int pageNum = Integer.parseInt(page);
        // 动态获得前端传
        String size = searchMap.get("size");
        // 默认一页显示20条数据
        if (StringUtils.isEmpty(size)) {
            size = "20";
        }
        int pageSize = Integer.parseInt(size);
        Pageable pageable = PageRequest.of(pageNum - 1, pageSize);
        builder.withPageable(pageable);
        return builder;
    }
}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312

代码例子

/**
 * 商品搜索管理Service实现类
 * Created by macro on 2018/6/19.
 */
@Service
public class EsProductServiceImpl implements EsProductService {
    private static final Logger LOGGER = LoggerFactory.getLogger(EsProductServiceImpl.class);
    @Autowired
    private EsProductDao productDao;
    @Autowired
    private EsProductRepository productRepository;
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;
    @Override
    public int importAll() {
        List<EsProduct> esProductList = productDao.getAllEsProductList(null);
        Iterable<EsProduct> esProductIterable = productRepository.saveAll(esProductList);
        Iterator<EsProduct> iterator = esProductIterable.iterator();
        int result = 0;
        while (iterator.hasNext()) {
            result++;
            iterator.next();
        }
        return result;
    }

    @Override
    public void delete(Long id) {
        productRepository.deleteById(id);
    }

    @Override
    public EsProduct create(Long id) {
        EsProduct result = null;
        List<EsProduct> esProductList = productDao.getAllEsProductList(id);
        if (esProductList.size() > 0) {
            EsProduct esProduct = esProductList.get(0);
            result = productRepository.save(esProduct);
        }
        return result;
    }

    @Override
    public void delete(List<Long> ids) {
        if (!CollectionUtils.isEmpty(ids)) {
            List<EsProduct> esProductList = new ArrayList<>();
            for (Long id : ids) {
                EsProduct esProduct = new EsProduct();
                esProduct.setId(id);
                esProductList.add(esProduct);
            }
            productRepository.deleteAll(esProductList);
        }
    }

    @Override
    public Page<EsProduct> search(String keyword, Integer pageNum, Integer pageSize) {
        Pageable pageable = PageRequest.of(pageNum, pageSize);
        return productRepository.findByNameOrSubTitleOrKeywords(keyword, keyword, keyword, pageable);
    }

    @Override
    public Page<EsProduct> search(String keyword, Long brandId, Long productCategoryId, Integer pageNum, Integer pageSize,Integer sort) {
        Pageable pageable = PageRequest.of(pageNum, pageSize);
        NativeSearchQueryBuilder nativeSearchQueryBuilder = new NativeSearchQueryBuilder();
        //分页
        nativeSearchQueryBuilder.withPageable(pageable);
        //过滤
        if (brandId != null || productCategoryId != null) {
            BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
            if (brandId != null) {
                boolQueryBuilder.must(QueryBuilders.termQuery("brandId", brandId));
            }
            if (productCategoryId != null) {
                boolQueryBuilder.must(QueryBuilders.termQuery("productCategoryId", productCategoryId));
            }
            nativeSearchQueryBuilder.withFilter(boolQueryBuilder);
        }
        //搜索
        if (StringUtils.isEmpty(keyword)) {
            nativeSearchQueryBuilder.withQuery(QueryBuilders.matchAllQuery());
        } else {
            List<FunctionScoreQueryBuilder.FilterFunctionBuilder> filterFunctionBuilders = new ArrayList<>();
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("name", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(10)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("subTitle", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(5)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("keywords", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(2)));
            FunctionScoreQueryBuilder.FilterFunctionBuilder[] builders = new FunctionScoreQueryBuilder.FilterFunctionBuilder[filterFunctionBuilders.size()];
            filterFunctionBuilders.toArray(builders);
            FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(builders)
                    .scoreMode(FunctionScoreQuery.ScoreMode.SUM)
                    .setMinScore(2);
            nativeSearchQueryBuilder.withQuery(functionScoreQueryBuilder);
        }
        //排序
        if(sort==1){
            //按新品从新到旧
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("id").order(SortOrder.DESC));
        }else if(sort==2){
            //按销量从高到低
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("sale").order(SortOrder.DESC));
        }else if(sort==3){
            //按价格从低到高
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.ASC));
        }else if(sort==4){
            //按价格从高到低
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
        }else{
            //按相关度
            nativeSearchQueryBuilder.withSort(SortBuilders.scoreSort().order(SortOrder.DESC));
        }
        nativeSearchQueryBuilder.withSort(SortBuilders.scoreSort().order(SortOrder.DESC));
        NativeSearchQuery searchQuery = nativeSearchQueryBuilder.build();
        LOGGER.info("DSL:{}", searchQuery.getQuery().toString());
        return productRepository.search(searchQuery);
    }

    @Override
    public Page<EsProduct> recommend(Long id, Integer pageNum, Integer pageSize) {
        Pageable pageable = PageRequest.of(pageNum, pageSize);
        List<EsProduct> esProductList = productDao.getAllEsProductList(id);
        if (esProductList.size() > 0) {
            EsProduct esProduct = esProductList.get(0);
            String keyword = esProduct.getName();
            Long brandId = esProduct.getBrandId();
            Long productCategoryId = esProduct.getProductCategoryId();
            //根据商品标题、品牌、分类进行搜索
            List<FunctionScoreQueryBuilder.FilterFunctionBuilder> filterFunctionBuilders = new ArrayList<>();
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("name", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(8)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("subTitle", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(2)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("keywords", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(2)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("brandId", brandId),
                    ScoreFunctionBuilders.weightFactorFunction(5)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("productCategoryId", productCategoryId),
                    ScoreFunctionBuilders.weightFactorFunction(3)));
            FunctionScoreQueryBuilder.FilterFunctionBuilder[] builders = new FunctionScoreQueryBuilder.FilterFunctionBuilder[filterFunctionBuilders.size()];
            filterFunctionBuilders.toArray(builders);
            FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(builders)
                    .scoreMode(FunctionScoreQuery.ScoreMode.SUM)
                    .setMinScore(2);
            //用于过滤掉相同的商品
            BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder();
            boolQueryBuilder.mustNot(QueryBuilders.termQuery("id",id));
            //构建查询条件
            NativeSearchQueryBuilder builder = new NativeSearchQueryBuilder();
            builder.withQuery(functionScoreQueryBuilder);
            builder.withFilter(boolQueryBuilder);
            builder.withPageable(pageable);
            NativeSearchQuery searchQuery = builder.build();
            LOGGER.info("DSL:{}", searchQuery.getQuery().toString());
            return productRepository.search(searchQuery);
        }
        return new PageImpl<>(null);
    }

    @Override
    public EsProductRelatedInfo searchRelatedInfo(String keyword) {
        NativeSearchQueryBuilder builder = new NativeSearchQueryBuilder();
        //搜索条件
        if(StringUtils.isEmpty(keyword)){
            builder.withQuery(QueryBuilders.matchAllQuery());
        }else{
            builder.withQuery(QueryBuilders.multiMatchQuery(keyword,"name","subTitle","keywords"));
        }
        //聚合搜索品牌名称
        builder.addAggregation(AggregationBuilders.terms("brandNames").field("brandName"));
        //集合搜索分类名称
        builder.addAggregation(AggregationBuilders.terms("productCategoryNames").field("productCategoryName"));
        //聚合搜索商品属性,去除type=1的属性
        AbstractAggregationBuilder aggregationBuilder = AggregationBuilders.nested("allAttrValues","attrValueList")
                .subAggregation(AggregationBuilders.filter("productAttrs",QueryBuilders.termQuery("attrValueList.type",1))
                .subAggregation(AggregationBuilders.terms("attrIds")
                        .field("attrValueList.productAttributeId")
                        .subAggregation(AggregationBuilders.terms("attrValues")
                                .field("attrValueList.value"))
                        .subAggregation(AggregationBuilders.terms("attrNames")
                                .field("attrValueList.name"))));
        builder.addAggregation(aggregationBuilder);
        NativeSearchQuery searchQuery = builder.build();
        SearchHits<EsProduct> searchHits = elasticsearchRestTemplate.search(searchQuery, EsProduct.class);
        return convertProductRelatedInfo(searchHits);
    }

    /**
     * 将返回结果转换为对象
     */
    private EsProductRelatedInfo convertProductRelatedInfo(SearchHits<EsProduct> response) {
        EsProductRelatedInfo productRelatedInfo = new EsProductRelatedInfo();
        Map<String, Aggregation> aggregationMap = response.getAggregations().getAsMap();
        //设置品牌
        Aggregation brandNames = aggregationMap.get("brandNames");
        List<String> brandNameList = new ArrayList<>();
        for(int i = 0; i<((Terms) brandNames).getBuckets().size(); i++){
            brandNameList.add(((Terms) brandNames).getBuckets().get(i).getKeyAsString());
        }
        productRelatedInfo.setBrandNames(brandNameList);
        //设置分类
        Aggregation productCategoryNames = aggregationMap.get("productCategoryNames");
        List<String> productCategoryNameList = new ArrayList<>();
        for(int i=0;i<((Terms) productCategoryNames).getBuckets().size();i++){
            productCategoryNameList.add(((Terms) productCategoryNames).getBuckets().get(i).getKeyAsString());
        }
        productRelatedInfo.setProductCategoryNames(productCategoryNameList);
        //设置参数
        Aggregation productAttrs = aggregationMap.get("allAttrValues");
        List<? extends Terms.Bucket> attrIds = ((ParsedLongTerms) ((ParsedFilter) ((ParsedNested) productAttrs).getAggregations().get("productAttrs")).getAggregations().get("attrIds")).getBuckets();
        List<EsProductRelatedInfo.ProductAttr> attrList = new ArrayList<>();
        for (Terms.Bucket attrId : attrIds) {
            EsProductRelatedInfo.ProductAttr attr = new EsProductRelatedInfo.ProductAttr();
            attr.setAttrId((Long) attrId.getKey());
            List<String> attrValueList = new ArrayList<>();
            List<? extends Terms.Bucket> attrValues = ((ParsedStringTerms) attrId.getAggregations().get("attrValues")).getBuckets();
            List<? extends Terms.Bucket> attrNames = ((ParsedStringTerms) attrId.getAggregations().get("attrNames")).getBuckets();
            for (Terms.Bucket attrValue : attrValues) {
                attrValueList.add(attrValue.getKeyAsString());
            }
            attr.setAttrValues(attrValueList);
            if(!CollectionUtils.isEmpty(attrNames)){
                String attrName = attrNames.get(0).getKeyAsString();
                attr.setAttrName(attrName);
            }
            attrList.add(attr);
        }
        productRelatedInfo.setProductAttrs(attrList);
        return productRelatedInfo;
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233

10000条上限(参考https://blog.csdn.net/u014792378/article/details/121565881?spm=1001.2101.3001.6650.6&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-6.pc_relevant_paycolumn_v3&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-6.pc_relevant_paycolumn_v3&utm_relevant_index=13)

查询条数限制

query时默认上限是10000条 向ES服务器put一条设置即可修改该限制
PUT /索引名/_settings?preserve_existing=true
{“index.max_result_window”:“2000000000”}

count限制

使用ElasticsearchRepository或者ElasticsearchRestTemplate查询分页时,返回的total数也会限制10000,导致分页功能页面仅显示10000条。
从AbstractQuery的源码得知里面有提供字段trackTotalHits用于查询总数,但是builder类NativeSearchQueryBuilder中没有提供设值方法 我们可以在此基础上自定义一个QueryBuilder来设值进去即可。

import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.search.sort.SortBuilder;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.query.NativeSearchQuery;
import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder;

/**
 * 自定义queryBuilder 在原基础上添加了trackTotalHits的配置

 */
public class NativeSearchQueryBuilderCustom extends NativeSearchQueryBuilder{

	private Boolean trackTotalHits;

	public NativeSearchQueryBuilderCustom() {
	}

	public NativeSearchQueryBuilderCustom trackTotalHits(boolean trackTotalHits) {
		this.trackTotalHits = trackTotalHits;
		return this;
	}

	@Override
	public NativeSearchQueryBuilderCustom withFields(String... fields) {
		super.withFields(fields);
		return this;
	}

	@Override
	public NativeSearchQueryBuilderCustom withQuery(QueryBuilder queryBuilder) {
		super.withQuery(queryBuilder);
		return this;
	}

	@Override
	public NativeSearchQueryBuilderCustom withSort(SortBuilder sortBuilder) {
		super.withSort(sortBuilder);
		return this;
	}

	@Override
	public NativeSearchQueryBuilderCustom withPageable(Pageable pageable) {
		super.withPageable(pageable);
		return this;
	}

	@Override
	public NativeSearchQuery build() {
		NativeSearchQuery build = super.build();
		if(this.trackTotalHits != null){
			build.setTrackTotalHits(this.trackTotalHits);
		}

		return build;
	}
}


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
NativeSearchQueryBuilderCustom queryBuilder = new NativeSearchQueryBuilderCustom()
			.withPageable(PageRequest.of(query.getCurrent(), query.getSize()))	// 分页
			.withSort(SortBuilders.fieldSort("createTime").order(SortOrder.DESC))	// 排序
			.withFields(fixedEsField)	// 过滤字段
			.trackTotalHits(true);	// 查询所有数

repository.search(queryBuilder.build());

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/325724
推荐阅读
相关标签
  

闽ICP备14008679号