赞
踩
在机器学习故障诊断中,常见的机械振动信号特征提取方法包括时域特征和频域特征。下面是一个示例的Python代码,演示了如何提取这些特征并进行故障诊断: import numpy as np from scipy.stats import kurtosis, skew from scipy.fft import fft from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score # 1. 特征提取函数 # 时域特征提取 def time_domain_features(signal): mean = np.mean(signal) variance = np.var(signal) kurt = kurtosis(signal) skewness = skew(signal) return mean, variance, kurt, skewness # 频域特征提取 def frequency_domain_features(signal, sample_rate): spectrum = np.abs(fft(signal)) freq = np.fft.fftfreq(len(signal), d=1/sample_rate) max_freq = freq[np.argmax(spectrum)] amplitude_spectrum = spectrum[:len(signal)//2] return max_freq, amplitude_spectrum # 2. 数据准备 # 假设你有一组振动信号数据,分别对应正常和故障状态 normal_data = [...] # 正常状态振动信号数据 faulty_data = [...] # 故障状态振动信号数据 # 构建标签 normal_labels = np.zeros(len(normal_data)) faulty_labels = np.ones(len(faulty_data)) # 合并数据和标签 data = np.concatenate((normal_data, faulty_data), axis=0) labels = np.concatenate((normal_labels, faulty_labels), axis=0) # 3. 特征提取和数据预处理 # 初始化特征列表 features = [] # 提取时域和频域特征 for signal in data: time_feats = time_domain_features(signal) freq_feats = frequency_domain_features(signal, sample_rate) feats = np.concatenate((time_feats, freq_feats), axis=0) features.append(feats) # 数据预处理(标准化) scaler = StandardScaler() scaled_features = scaler.fit_transform(features) # 4. 数据拆分和模型训练 # 拆分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(scaled_features, labels, test_size=0.2, random_state=42) # 初始化SVM分类器 model = SVC() # 训练模型 model.fit(X_train, y_train) # 5. 模型评估 # 在测试集上进行预测 y_pred = model.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 以上代码示例演示了如何使用时域和频域特征提取机械振动信号,并使用SVM分类器进行故障诊断。你可以根据实际需求进行修改和扩展,例如尝试其他特征提取方法、尝试其他分类器或调整模型参数等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。