赞
踩
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
接下来,我们准备数据。假设我们有一组时间序列数据,其中前两列是输入特征,最后一列是输出结果。我们将数据分为训练集和测试集,并进行归一化处理:
# 读取数据 data = pd.read_csv('data.csv') # 划分数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 特征归一化 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 划分输入和输出 X_train, y_train = train_data[:, :-1], train_data[:, -1] X_test, y_test = test_data[:, :-1], test_data[:, -1] # 将输入转换为三维数组 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
接下来,我们建立一个三层的BP神经网络模型,其中第一层有64个神经元,第二层有32个神经元,输出层只有一个神经元:
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
# 定义优化器
adam = Adam(lr=0.001)
# 编译模型
model.compile(loss='mse', optimizer=adam)
接下来进行模型训练:
history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test), verbose=2, shuffle=False)
最后,我们可以使用该模型进行预测:
predict = model.predict(X_test)
完整代码如下:
# 导入必要的库 import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam # 读取数据 data = pd.read_csv('data.csv') # 划分数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 特征归一化 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 划分输入和输出 X_train, y_train = train_data[:, :-1], train_data[:, -1] X_test, y_test = test_data[:, :-1], test_data[:, -1] # 将输入转换为三维数组 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) # 建立模型 model = Sequential() model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dropout(0.2)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1)) # 定义优化器 adam = Adam(lr=0.001) # 编译模型 model.compile(loss='mse', optimizer=adam) # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test), verbose=2, shuffle=False) # 预测值 predict = model.predict(X_test) ```我们首先需要导入必要的库: ```python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam
接下来,我们准备数据。假设我们有一组时间序列数据,其中前两列是输入特征,最后一列是输出结果。我们将数据分为训练集和测试集,并进行归一化处理:
# 读取数据 data = pd.read_csv('data.csv') # 划分数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 特征归一化 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 划分输入和输出 X_train, y_train = train_data[:, :-1], train_data[:, -1] X_test, y_test = test_data[:, :-1], test_data[:, -1] # 将输入转换为三维数组 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
接下来,我们建立一个三层的BP神经网络模型,其中第一层有64个神经元,第二层有32个神经元,输出层只有一个神经元:
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
# 定义优化器
adam = Adam(lr=0.001)
# 编译模型
model.compile(loss='mse', optimizer=adam)
接下来进行模型训练:
history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test), verbose=2, shuffle=False)
最后,我们可以使用该模型进行预测:
predict = model.predict(X_test)
完整代码如下:
# 导入必要的库 import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam # 读取数据 data = pd.read_csv('data.csv') # 划分数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 特征归一化 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 划分输入和输出 X_train, y_train = train_data[:, :-1], train_data[:, -1] X_test, y_test = test_data[:, :-1], test_data[:, -1] # 将输入转换为三维数组 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) # 建立模型 model = Sequential() model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dropout(0.2)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1)) # 定义优化器 adam = Adam(lr=0.001) # 编译模型 model.compile(loss='mse', optimizer=adam) # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test), verbose=2, shuffle=False) # 预测值 predict = model.predict(X_test) ```我们首先需要导入必要的库: ```python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam
接下来,我们准备数据。假设我们有一组时间序列数据,其中前两列是输入特征,最后一列是输出结果。我们将数据分为训练集和测试集,并进行归一化处理:
# 读取数据 data = pd.read_csv('data.csv') # 划分数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 特征归一化 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 划分输入和输出 X_train, y_train = train_data[:, :-1], train_data[:, -1] X_test, y_test = test_data[:, :-1], test_data[:, -1] # 将输入转换为三维数组 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
接下来,我们建立一个三层的BP神经网络模型,其中第一层有64个神经元,第二层有32个神经元,输出层只有一个神经元:
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
# 定义优化器
adam = Adam(lr=0.001)
# 编译模型
model.compile(loss='mse', optimizer=adam)
接下来进行模型训练:
history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test), verbose=2, shuffle=False)
最后,我们可以使用该模型进行预测:
predict = model.predict(X_test)
完整代码如下:
# 导入必要的库 import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam # 读取数据 data = pd.read_csv('data.csv') # 划分数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 特征归一化 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 划分输入和输出 X_train, y_train = train_data[:, :-1], train_data[:, -1] X_test, y_test = test_data[:, :-1], test_data[:, -1] # 将输入转换为三维数组 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) # 建立模型 model = Sequential() model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dropout(0.2)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1)) # 定义优化器 adam = Adam(lr=0.001) # 编译模型 model.compile(loss='mse', optimizer=adam) # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test), verbose=2, shuffle=False) # 预测值 predict = model.predict(X_test)
该博文为原创文章,未经博主同意不得转。本文章博客地址:https://cplusplus.blog.csdn.net/article/details/133968628
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。