近日很想验证使用pytorch训练模型转tensorrt各种关系,更深理解基于C++ API接口engine加速理论(Python API接口稍微简单,将不在验证),本文基于ResNet分类网络。
本文内容主要分为六个内容,第一个内容介绍使用python构建网络,获取pt/wts/onnx文件;第二个内容介绍基于C++ API构建engine;第三个内容介绍基于C++使用onnx构建
engine;第四个内容介绍windows性能及linux性能(添加于20220914);第五个内容介绍验证;第六个内容介绍如何在Linux环境下编译engine且运行。
代码:ResNet.zip
链接:https://pan.baidu.com/s/1ujX19IUV0EPSIMyIcBnClA?pwd=r63z
提取码:r63z
版本:tensorrt版本8.4,可使用8.0以上版本
一.使用torchvision获得wts onnx 编译语言:python
①.此代码通过调用torchvision获得resnet18分类权重,并转换为wts和onnx
- from torchvision.transforms import transforms
- import torch
- import torchvision.models as models
- import struct
-
- transform_train = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
- ])
- transforms_test = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
- ])
-
-
-
- def build_model():
- model = models.resnet18(pretrained=True)
- model = model.eval()
- model = model.cuda()
- torch.save(model, "./resnet18.pth")
-
-
-
-
- def get_wts(model_path='./resnet18.pth',save_wts_path="./resnet18.wts"):
- net = torch.load(model_path)
-
- net = net.cuda()
- net = net.eval()
- print('model: ', net)
- # print('state dict: ', net.state_dict().keys())
- tmp = torch.ones(1, 3, 224, 224).cuda()
- print('input: ', tmp)
- out = net(tmp)
-
- print('output:', out)
-
-
- f = open(save_wts_path, 'w')
- f.write("{}\n".format(len(net.state_dict().keys())))
- for k, v in net.state_dict().items():
- print('key: ', k)
- print('value: ', v.shape)
- vr = v.reshape(-1).cpu().numpy()
- f.write("{} {}".format(k, len(vr)))
- for vv in vr:
- f.write(" ")
- f.write(struct.pack(">f", float(vv)).hex())
- f.write("\n")
-
- def get_onnx(model_path='./resnet18.pth',save_onnx_path="./resnet18.onnx"):
- # 定义静态onnx,若推理input_data格式不一致,将导致保存
- input_data = torch.randn(2, 3, 224, 224).cuda()
- model = torch.load(model_path).cuda()
- input_names = ["data"] + ["called_%d" % i for i in range(2)]
- output_names = ["prob"]
- torch.onnx.export(
- model,
- input_data,
- save_onnx_path,
- verbose=True,
- input_names=input_names,
- output_names=output_names
- )
-
-
-
- if __name__ == '__main__':
- # build_model()
- # get_wts(model_path='./resnet18.pth',save_wts_path="./resnet18.wts")
-
- get_onnx(model_path='./resnet18.pth', save_onnx_path="./resnet18.onnx")
二.Resnet分类采用C++ API 转换tensorrt 编译语言:C++/tensorrt
①.此代码为resnet分类转换为tensorrt代码,已可使用visualstudi编译器
resnet18.cpp文件
- #include "NvInfer.h"
- #include "cuda_runtime_api.h"
- //#include "logging.h"
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <sstream>
- #include <vector>
- #include <chrono>
- #include <cmath>
- #include <cassert>
-
-
- #include<opencv2/core/core.hpp>
- #include<opencv2/highgui/highgui.hpp>
- #include <opencv2/opencv.hpp>
-
-
-
- using namespace std;
-
- #define CHECK(status) \
- do\
- {\
- auto ret = (status);\
- if (ret != 0)\
- {\
- std::cerr << "Cuda failure: " << ret << std::endl;\
- abort();\
- }\
- } while (0)
-
- // stuff we know about the network and the input/output blobs
- static const int INPUT_H = 224;
- static const int INPUT_W = 224;
- static const int OUTPUT_SIZE = 1000;
-
- const char* INPUT_BLOB_NAME = "data";
- const char* OUTPUT_BLOB_NAME = "prob";
-
- using namespace nvinfer1;
-
- //static Logger gLogger;
-
- //构建Logger
- class Logger : public ILogger
- {
- void log(Severity severity, const char* msg) noexcept override
- {
- // suppress info-level messages
- if (severity <= Severity::kWARNING)
- std::cout << msg << std::endl;
- }
- } gLogger;
-
-
- // Load weights from files shared with TensorRT samples.
- // TensorRT weight files have a simple space delimited format:
- // [type] [size] <data x size in hex>
- std::map<std::string, Weights> loadWeights(const std::string file)
- {
- std::cout << "Loading weights: " << file << std::endl;
- std::map<std::string, Weights> weightMap;
-
- // Open weights file
- std::ifstream input(file);
- assert(input.is_open() && "Unable to load weight file.");
-
- // Read number of weight blobs
- int32_t count;
- input >> count;
- assert(count > 0 && "Invalid weight map file.");
-
- while (count--)
- {
- Weights wt{ DataType::kFLOAT, nullptr, 0 };
- uint32_t size;
-
- // Read name and type of blob
- std::string name;
- input >> name >> std::dec >> size;
- wt.type = DataType::kFLOAT;
-
- // Load blob
- uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
- for (uint32_t x = 0, y = size; x < y; ++x)
- {
- input >> std::hex >> val[x];
- }
- wt.values = val;
-
- wt.count = size;
- weightMap[name] = wt;
- }
-
- return weightMap;
- }
-
- IScaleLayer* addBatchNorm2d(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
- float* gamma = (float*)weightMap[lname + ".weight"].values;
- float* beta = (float*)weightMap[lname + ".bias"].values;
- float* mean = (float*)weightMap[lname + ".running_mean"].values;
- float* var = (float*)weightMap[lname + ".running_var"].values;
- int len = weightMap[lname + ".running_var"].count;
- std::cout << "len " << len << std::endl;
-
- float* scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
- for (int i = 0; i < len; i++) {
- scval[i] = gamma[i] / sqrt(var[i] + eps);
- }
- Weights scale{ DataType::kFLOAT, scval, len };
-
- float* shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
- for (int i = 0; i < len; i++) {
- shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
- }
- Weights shift{ DataType::kFLOAT, shval, len };
-
- float* pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
- for (int i = 0; i < len; i++) {
- pval[i] = 1.0;
- }
- Weights power{ DataType::kFLOAT, pval, len };
-
- weightMap[lname + ".scale"] = scale;
- weightMap[lname + ".shift"] = shift;
- weightMap[lname + ".power"] = power;
- IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
- assert(scale_1);
- return scale_1;
- }
-
- IActivationLayer* basicBlock(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int stride, std::string lname) {
- Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
-
- IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ 3, 3 }, weightMap[lname + "conv1.weight"], emptywts);
- assert(conv1);
- conv1->setStrideNd(DimsHW{ stride, stride });
- conv1->setPaddingNd(DimsHW{ 1, 1 });
-
- IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
-
- IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
- assert(relu1);
-
- IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{ 3, 3 }, weightMap[lname + "conv2.weight"], emptywts);
- assert(conv2);
- conv2->setPaddingNd(DimsHW{ 1, 1 });
-
- IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
-
- IElementWiseLayer* ew1;
- if (inch != outch) {
- IConvolutionLayer* conv3 = network->addConvolutionNd(input, outch, DimsHW{ 1, 1 }, weightMap[lname + "downsample.0.weight"], emptywts);
- assert(conv3);
- conv3->setStrideNd(DimsHW{ stride, stride });
- IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "downsample.1", 1e-5);
- ew1 = network->addElementWise(*bn3->getOutput(0), *bn2->getOutput(0), ElementWiseOperation::kSUM);
- }
- else {
- ew1 = network->addElementWise(input, *bn2->getOutput(0), ElementWiseOperation::kSUM);
- }
- IActivationLayer* relu2 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
- assert(relu2);
- return relu2;
- }
-
- // Creat the engine using only the API and not any parser.
- ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, string wts_path = "../resnet18.wts")
- {
- INetworkDefinition* network = builder->createNetworkV2(0U);
-
- // Create input tensor of shape { 3, INPUT_H, INPUT_W } with name INPUT_BLOB_NAME
- ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
- assert(data);
-
- std::map<std::string, Weights> weightMap = loadWeights(wts_path);
- Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
-
- IConvolutionLayer* conv1 = network->addConvolutionNd(*data, 64, DimsHW{ 7, 7 }, weightMap["conv1.weight"], emptywts);
- assert(conv1);
- conv1->setStrideNd(DimsHW{ 2, 2 });
- conv1->setPaddingNd(DimsHW{ 3, 3 });
-
- IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "bn1", 1e-5);
-
- IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
- assert(relu1);
-
- IPoolingLayer* pool1 = network->addPoolingNd(*relu1->getOutput(0), PoolingType::kMAX, DimsHW{ 3, 3 });
- assert(pool1);
- pool1->setStrideNd(DimsHW{ 2, 2 });
- pool1->setPaddingNd(DimsHW{ 1, 1 });
-
- IActivationLayer* relu2 = basicBlock(network, weightMap, *pool1->getOutput(0), 64, 64, 1, "layer1.0.");
- IActivationLayer* relu3 = basicBlock(network, weightMap, *relu2->getOutput(0), 64, 64, 1, "layer1.1.");
-
- IActivationLayer* relu4 = basicBlock(network, weightMap, *relu3->getOutput(0), 64, 128, 2, "layer2.0.");
- IActivationLayer* relu5 = basicBlock(network, weightMap, *relu4->getOutput(0), 128, 128, 1, "layer2.1.");
-
- IActivationLayer* relu6 = basicBlock(network, weightMap, *relu5->getOutput(0), 128, 256, 2, "layer3.0.");
- IActivationLayer* relu7 = basicBlock(network, weightMap, *relu6->getOutput(0), 256, 256, 1, "layer3.1.");
-
- IActivationLayer* relu8 = basicBlock(network, weightMap, *relu7->getOutput(0), 256, 512, 2, "layer4.0.");
- IActivationLayer* relu9 = basicBlock(network, weightMap, *relu8->getOutput(0), 512, 512, 1, "layer4.1.");
-
- IPoolingLayer* pool2 = network->addPoolingNd(*relu9->getOutput(0), PoolingType::kAVERAGE, DimsHW{ 7, 7 });
- assert(pool2);
- pool2->setStrideNd(DimsHW{ 1, 1 });
-
- IFullyConnectedLayer* fc1 = network->addFullyConnected(*pool2->getOutput(0), 1000, weightMap["fc.weight"], weightMap["fc.bias"]);
- assert(fc1);
-
- fc1->getOutput(0)->setName(OUTPUT_BLOB_NAME);
- std::cout << "set name out" << std::endl;
- network->markOutput(*fc1->getOutput(0));
-
- // Build engine
- builder->setMaxBatchSize(maxBatchSize);
- config->setMaxWorkspaceSize(1 << 20);
- //config->setFlag(nvinfer1::BuilderFlag::kFP16);
-
- ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
- std::cout << "build out" << std::endl;
-
- // Don't need the network any more
- network->destroy();
- // Release host memory
- for (auto& mem : weightMap)
- {
- free((void*)(mem.second.values));
- }
- return engine;
- }
- void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream)
- {
- string wts_path = "./resnet18.wts";
- // Create builder
- IBuilder* builder = createInferBuilder(gLogger);
- IBuilderConfig* config = builder->createBuilderConfig();
- // Create model to populate the network, then set the outputs and create an engine
- ICudaEngine* engine = createEngine(maxBatchSize, builder, config, DataType::kFLOAT, wts_path = wts_path);
- assert(engine != nullptr);
- // Serialize the engine
- (*modelStream) = engine->serialize();
- // Close everything down
- engine->destroy();
- builder->destroy();
- config->destroy();
- }
- void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
- {
- const ICudaEngine& engine = context.getEngine();
- // Pointers to input and output device buffers to pass to engine.
- // Engine requires exactly IEngine::getNbBindings() number of buffers.
- assert(engine.getNbBindings() == 2);
- void* buffers[2];
- // In order to bind the buffers, we need to know the names of the input and output tensors.
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
- const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
- const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
- // Create GPU buffers on device
- CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
- CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
- // Create stream
- cudaStream_t stream;
- CHECK(cudaStreamCreate(&stream));
- // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
- CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
- context.enqueue(batchSize, buffers, stream, nullptr);
- CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
- cudaStreamSynchronize(stream);
- // Release stream and buffers
- cudaStreamDestroy(stream);
- CHECK(cudaFree(buffers[inputIndex]));
- CHECK(cudaFree(buffers[outputIndex]));
- }
- //加工图片变成拥有batch的输入, tensorrt输入需要的格式,为一个维度
- void ProcessImage(cv::Mat image, float input_data[]) {
- //只处理一张图片,总之结果为一维[batch*3*INPUT_W*INPUT_H]
- //以下代码为投机取巧了
- cv::resize(image, image, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
- std::vector<cv::Mat> InputImage;
- InputImage.push_back(image);
- int ImgCount = InputImage.size();
- //float input_data[BatchSize * 3 * INPUT_H * INPUT_W];
- for (int b = 0; b < ImgCount; b++) {
- cv::Mat img = InputImage.at(b);
- int w = img.cols;
- int h = img.rows;
- int i = 0;
- for (int row = 0; row < h; ++row) {
- uchar* uc_pixel = img.data + row * img.step;
- for (int col = 0; col < INPUT_W; ++col) {
- input_data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
- input_data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
- input_data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
- uc_pixel += 3;
- ++i;
- }
- }
- }
- }
- int get_trtengine() {
- IHostMemory* modelStream{ nullptr };
- APIToModel(1, &modelStream);
- assert(modelStream != nullptr);
- std::ofstream p("./resnet18.engine", std::ios::binary);
- if (!p)
- {
- std::cerr << "could not open plan output file" << std::endl;
- return -1;
- }
- p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
- modelStream->destroy();
- return 0;
- }
- int infer() {
- //加载engine引擎
- char* trtModelStream{ nullptr };
- size_t size{ 0 };
- std::ifstream file("./resnet18.engine", std::ios::binary);
- if (file.good()) {
- file.seekg(0, file.end);
- size = file.tellg();
- file.seekg(0, file.beg);
- trtModelStream = new char[size];
- assert(trtModelStream);
- file.read(trtModelStream, size);
- file.close();
- }
- //反序列为engine,创建context
- IRuntime* runtime = createInferRuntime(gLogger);
- assert(runtime != nullptr);
- ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
- assert(engine != nullptr);
- IExecutionContext* context = engine->createExecutionContext();
- assert(context != nullptr);
- delete[] trtModelStream;
- //*********************推理*********************//
- // 循环推理
- float time_read_img = 0.0;
- float time_infer = 0.0;
- static float prob[OUTPUT_SIZE];
- for (int i = 0; i < 1000; i++) {
- // 处理图片为固定输出
-
- auto start = std::chrono::system_clock::now(); //时间函数
- std::string path = "./1.jpg";
- std::cout << "img_path=" << path << endl;
- static float data[3 * INPUT_H * INPUT_W];
- cv::Mat img = cv::imread(path);
- ProcessImage(img, data);
- auto end = std::chrono::system_clock::now();
- time_read_img = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_read_img;
-
- //Run inference
- start = std::chrono::system_clock::now(); //时间函数
- doInference(*context, data, prob, 1);
- end = std::chrono::system_clock::now();
- time_infer = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_infer;
- std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
- //输出后处理
- //std::cout <<"prob="<<prob << std::endl;
- float cls_float = prob[0];
- int cls_id = 0;
- for (int i = 0; i < OUTPUT_SIZE; i++) {
- if (cls_float < prob[i]) {
- cls_float = prob[i];
- cls_id = i;
- }
- }
- std::cout << "i=" << i << "\tcls_id=" << cls_id << "\t cls_float=" << cls_float << std::endl;
- }
-
- std::cout << "C++2engine" << "mean read img time =" << time_read_img / 1000 << "ms\t" << "mean infer img time =" << time_infer / 1000 << "ms" << std::endl;
- // Destroy the engine
- context->destroy();
- engine->destroy();
- runtime->destroy();
- return 0;
- }
- int main(int argc, char** argv)
- {
- //string mode = argv[1];
- string mode = "-d"; //适用windows编译,固定指定参数
- //if (std::string(argv[1]) == "-s") {
- if (mode == "-s") {
- get_trtengine();
- }
- //else if (std::string(argv[1]) == "-d") {
- else if (mode == "-d") {
- infer();
- }
- else {
- return -1;
- }
- return 0;
- }
②.若需要linux系统运行可编译的CMakeLists.txt文件为:
- cmake_minimum_required(VERSION 2.6)
-
- project(resnet)
-
- add_definitions(-std=c++11)
-
- option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
- set(CMAKE_CXX_STANDARD 11)
- set(CMAKE_BUILD_TYPE Debug)
-
- include_directories(${PROJECT_SOURCE_DIR}/include)
- # include and link dirs of cuda and tensorrt, you need adapt them if yours are different
- # cuda
- include_directories(/usr/local/cuda/include)
- link_directories(/usr/local/cuda/lib64)
- # tensorrt
- include_directories(/usr/include/x86_64-linux-gnu/)
- link_directories(/usr/lib/x86_64-linux-gnu/)
-
- add_executable(resnet18 ${PROJECT_SOURCE_DIR}/resnet18.cpp)
- target_link_libraries(resnet18 nvinfer)
- target_link_libraries(resnet18 cudart)
-
-
- add_definitions(-O2 -pthread)
③.visual studio预测结果:
总之测试2张图基本在一个大类中,应该没啥错误。
④.linux预测结果显示:
三.Resnet分类采用C++ API 使用onnx 转换tensorrt 编译语言:C++/tensorrt
①.此代码为resnet分类采用onnx转换为tensorrt代码,已可使用visualstudi编译器
resnet18.cpp文件
- #include "NvInfer.h"
- #include "cuda_runtime_api.h"
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <sstream>
- #include <vector>
- #include <chrono>
- #include <cmath>
- #include <cassert>
-
-
- #include<opencv2/core/core.hpp>
- #include<opencv2/highgui/highgui.hpp>
- #include <opencv2/opencv.hpp>
-
-
- // onnx转换头文件
- #include "NvOnnxParser.h"
- using namespace nvonnxparser;
-
-
-
-
-
- using namespace std;
-
- #define CHECK(status) \
- do\
- {\
- auto ret = (status);\
- if (ret != 0)\
- {\
- std::cerr << "Cuda failure: " << ret << std::endl;\
- abort();\
- }\
- } while (0)
-
- // stuff we know about the network and the input/output blobs
- static const int INPUT_H = 224;
- static const int INPUT_W = 224;
- static const int OUTPUT_SIZE = 1000;
-
- const char* INPUT_BLOB_NAME = "data";
- const char* OUTPUT_BLOB_NAME = "prob";
-
- using namespace nvinfer1;
-
- //static Logger gLogger;
-
- //构建Logger
- class Logger : public ILogger
- {
- void log(Severity severity, const char* msg) noexcept override
- {
- // suppress info-level messages
- if (severity <= Severity::kWARNING)
- std::cout << msg << std::endl;
- }
- } gLogger;
-
-
-
-
-
- // Creat the engine using only the API and not any parser.
- ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config)
- {
-
- const char* onnx_path = "./resnet18.onnx";
-
- INetworkDefinition* network = builder->createNetworkV2(1U); //此处重点1U为OU就有问题
-
-
-
-
- IParser* parser = createParser(*network, gLogger);
- parser->parseFromFile(onnx_path, static_cast<int32_t>(ILogger::Severity::kWARNING));
-
- for (int32_t i = 0; i < parser->getNbErrors(); ++i) { std::cout << parser->getError(i)->desc() << std::endl; }
-
- std::cout << "successfully load the onnx model" << std::endl;
-
-
- // Build engine
- builder->setMaxBatchSize(maxBatchSize);
- config->setMaxWorkspaceSize(1 << 20);
- config->setFlag(nvinfer1::BuilderFlag::kFP16); // 设置精度计算
- //config->setFlag(nvinfer1::BuilderFlag::kINT8);
- ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
- std::cout << "successfully create engine " << std::endl;
-
- //销毁
- network->destroy();
- parser->destroy();
-
- return engine;
- }
-
- void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream)
- {
-
- // Create builder
- IBuilder* builder = createInferBuilder(gLogger);
- IBuilderConfig* config = builder->createBuilderConfig();
-
- // Create model to populate the network, then set the outputs and create an engine
- ICudaEngine* engine = createEngine(maxBatchSize, builder, config);
-
-
- assert(engine != nullptr);
-
- // Serialize the engine
- (*modelStream) = engine->serialize();
-
- // Close everything down
- engine->destroy();
- builder->destroy();
- config->destroy();
- }
-
- void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
- {
- const ICudaEngine& engine = context.getEngine();
-
- // Pointers to input and output device buffers to pass to engine.
- // Engine requires exactly IEngine::getNbBindings() number of buffers.
- assert(engine.getNbBindings() == 2);
- void* buffers[2];
-
- // In order to bind the buffers, we need to know the names of the input and output tensors.
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
- const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
- const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
-
- // Create GPU buffers on device
- CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
- CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
-
- // Create stream
- cudaStream_t stream;
- CHECK(cudaStreamCreate(&stream));
-
- // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
- CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
- context.enqueue(batchSize, buffers, stream, nullptr);
- CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
- cudaStreamSynchronize(stream);
-
- // Release stream and buffers
- cudaStreamDestroy(stream);
- CHECK(cudaFree(buffers[inputIndex]));
- CHECK(cudaFree(buffers[outputIndex]));
- }
-
-
- //加工图片变成拥有batch的输入, tensorrt输入需要的格式,为一个维度
- void ProcessImage(cv::Mat image, float input_data[]) {
- //只处理一张图片,总之结果为一维[batch*3*INPUT_W*INPUT_H]
- //以下代码为投机取巧了
-
- cv::resize(image, image, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
- std::vector<cv::Mat> InputImage;
-
- InputImage.push_back(image);
-
-
-
- int ImgCount = InputImage.size();
-
- //float input_data[BatchSize * 3 * INPUT_H * INPUT_W];
- for (int b = 0; b < ImgCount; b++) {
- cv::Mat img = InputImage.at(b);
- int w = img.cols;
- int h = img.rows;
- int i = 0;
- for (int row = 0; row < h; ++row) {
- uchar* uc_pixel = img.data + row * img.step;
- for (int col = 0; col < INPUT_W; ++col) {
- input_data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
- input_data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
- input_data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
- uc_pixel += 3;
- ++i;
- }
- }
-
- }
-
- }
-
- int get_trtengine() {
-
- IHostMemory* modelStream{ nullptr };
- APIToModel(1, &modelStream);
- assert(modelStream != nullptr);
-
- std::ofstream p("./resnet18.engine", std::ios::binary);
- if (!p)
- {
- std::cerr << "could not open plan output file" << std::endl;
- return -1;
- }
- p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
- modelStream->destroy();
-
- return 0;
-
- }
-
- int infer() {
-
- //加载engine引擎
- char* trtModelStream{ nullptr };
- size_t size{ 0 };
- std::ifstream file("./resnet18.engine", std::ios::binary);
- if (file.good()) {
- file.seekg(0, file.end);
- size = file.tellg();
- file.seekg(0, file.beg);
- trtModelStream = new char[size];
- assert(trtModelStream);
- file.read(trtModelStream, size);
- file.close();
- }
- //反序列为engine,创建context
-
- IRuntime* runtime = createInferRuntime(gLogger);
- assert(runtime != nullptr);
- ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
- assert(engine != nullptr);
- IExecutionContext* context = engine->createExecutionContext();
- assert(context != nullptr);
- delete[] trtModelStream;
-
-
-
- //*********************推理*********************//
-
-
- // 循环推理
-
-
- float time_read_img = 0.0;
- float time_infer = 0.0;
- static float prob[OUTPUT_SIZE];
- for (int i = 0; i < 1000; i++) {
-
- // 处理图片为固定输出
-
- auto start = std::chrono::system_clock::now(); //时间函数
- std::string path = "./1.jpg";
- std::cout << "img_path=" << path << endl;
- static float data[3 * INPUT_H * INPUT_W];
- cv::Mat img = cv::imread(path);
- ProcessImage(img, data);
- auto end = std::chrono::system_clock::now();
- time_read_img = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_read_img;
-
-
-
- //Run inference
- start = std::chrono::system_clock::now(); //时间函数
- doInference(*context, data, prob, 1);
- end = std::chrono::system_clock::now();
- time_infer = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_infer;
- std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
-
- //输出后处理
- //std::cout <<"prob="<<prob << std::endl;
- float cls_float = prob[0];
- int cls_id = 0;
- for (int i = 0; i < OUTPUT_SIZE; i++) {
- if (cls_float < prob[i]) {
- cls_float = prob[i];
- cls_id = i;
- }
- }
- std::cout << "i=" << i << "\tcls_id=" << cls_id << "\t cls_float=" << cls_float << std::endl;
- }
-
- std::cout << "C++2engine" << "mean read img time =" << time_read_img / 1000 << "ms\t" << "mean infer img time =" << time_infer / 1000 << "ms" << std::endl;
-
-
-
-
-
-
- // Destroy the engine
- context->destroy();
- engine->destroy();
- runtime->destroy();
-
-
-
-
-
-
-
-
- return 0;
- }
-
-
-
-
-
-
- int main(int argc, char** argv)
- {
-
- //string mode = argv[1];
- string mode = "-d"; //适用windows编译,固定指定参数
-
- //if (std::string(argv[1]) == "-s") {
- if (mode == "-s") {
- get_trtengine();
- }
- //else if (std::string(argv[1]) == "-d") {
- else if (mode == "-d") {
- infer();
- }
- else {
- return -1;
- }
-
-
- return 0;
- }
windows visual studio tensorrt8.4版本 onnx转engine展示
②.使用onnx-simpiler 进行优化onnx,但已是最简化,但若能简化,猜想预测会更快一些。
四.性能测试
性能测试结果(测试平台:windows10 cuda11.4 tensorrt8.4 RTX 2060):
性能测试结果(测试平台:Linux ubuntu18.4 cuda11.3 tensorrt8.2 RTX 2060)(添加:20220914):
注:检测1000张的平均时间
说明 window10与ubuntu是2个独立设备(电脑),读图主要是CPU处理代码,后期可改成CUDA处理提速。
五.验证
①.使用python将onnx转为engine引擎,使用C++调用验证。
结论:windows系统 可行! 很令人兴奋,意味着使用python转换为engine,将可以使用C++调用,无需再使用C++创建engine。
注:推理时间变长了快2倍。
python代码将其转为engine库,注:使用同样的tensorrt版本
C++推理代码(使用二或三中推理也可以),此代码已简化:
- #include "NvInfer.h"
- #include "cuda_runtime_api.h"
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <sstream>
- #include <vector>
- #include <chrono>
- #include <cmath>
- #include <cassert>
-
-
- #include<opencv2/core/core.hpp>
- #include<opencv2/highgui/highgui.hpp>
- #include <opencv2/opencv.hpp>
-
-
-
-
- using namespace std;
-
- #define CHECK(status) \
- do\
- {\
- auto ret = (status);\
- if (ret != 0)\
- {\
- std::cerr << "Cuda failure: " << ret << std::endl;\
- abort();\
- }\
- } while (0)
-
- // stuff we know about the network and the input/output blobs
- static const int INPUT_H = 224;
- static const int INPUT_W = 224;
- static const int OUTPUT_SIZE = 1000;
-
- const char* INPUT_BLOB_NAME = "data";
- const char* OUTPUT_BLOB_NAME = "prob";
-
- using namespace nvinfer1;
-
- //static Logger gLogger;
-
- //构建Logger
- class Logger : public ILogger
- {
- void log(Severity severity, const char* msg) noexcept override
- {
- // suppress info-level messages
- if (severity <= Severity::kWARNING)
- std::cout << msg << std::endl;
- }
- } gLogger;
-
-
-
-
-
-
-
- void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
- {
- const ICudaEngine& engine = context.getEngine();
-
- // Pointers to input and output device buffers to pass to engine.
- // Engine requires exactly IEngine::getNbBindings() number of buffers.
- assert(engine.getNbBindings() == 2);
- void* buffers[2];
-
- // In order to bind the buffers, we need to know the names of the input and output tensors.
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
- const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
- const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
-
- // Create GPU buffers on device
- CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
- CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
-
- // Create stream
- cudaStream_t stream;
- CHECK(cudaStreamCreate(&stream));
-
- // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
- CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
- context.enqueue(batchSize, buffers, stream, nullptr);
- CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
- cudaStreamSynchronize(stream);
-
- // Release stream and buffers
- cudaStreamDestroy(stream);
- CHECK(cudaFree(buffers[inputIndex]));
- CHECK(cudaFree(buffers[outputIndex]));
- }
-
-
- //加工图片变成拥有batch的输入, tensorrt输入需要的格式,为一个维度
- void ProcessImage(cv::Mat image, float input_data[]) {
- //只处理一张图片,总之结果为一维[batch*3*INPUT_W*INPUT_H]
- //以下代码为投机取巧了
-
- cv::resize(image, image, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
- std::vector<cv::Mat> InputImage;
-
- InputImage.push_back(image);
-
-
-
- int ImgCount = InputImage.size();
-
- //float input_data[BatchSize * 3 * INPUT_H * INPUT_W];
- for (int b = 0; b < ImgCount; b++) {
- cv::Mat img = InputImage.at(b);
- int w = img.cols;
- int h = img.rows;
- int i = 0;
- for (int row = 0; row < h; ++row) {
- uchar* uc_pixel = img.data + row * img.step;
- for (int col = 0; col < INPUT_W; ++col) {
- input_data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
- input_data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
- input_data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
- uc_pixel += 3;
- ++i;
- }
- }
-
- }
-
- }
-
-
- int infer() {
-
- //加载engine引擎
- char* trtModelStream{ nullptr };
- size_t size{ 0 };
- std::ifstream file("./resnet18.engine", std::ios::binary);
- if (file.good()) {
- file.seekg(0, file.end);
- size = file.tellg();
- file.seekg(0, file.beg);
- trtModelStream = new char[size];
- assert(trtModelStream);
- file.read(trtModelStream, size);
- file.close();
- }
- //反序列为engine,创建context
-
- IRuntime* runtime = createInferRuntime(gLogger);
- assert(runtime != nullptr);
- ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
- assert(engine != nullptr);
- IExecutionContext* context = engine->createExecutionContext();
- assert(context != nullptr);
- delete[] trtModelStream;
-
-
-
- //*********************推理*********************//
-
-
- // 循环推理
-
-
- float time_read_img = 0.0;
- float time_infer = 0.0;
- static float prob[OUTPUT_SIZE];
- for (int i = 0; i < 1000; i++) {
-
- // 处理图片为固定输出
-
- auto start = std::chrono::system_clock::now(); //时间函数
- std::string path = "./1.jpg";
- std::cout << "img_path=" << path << endl;
- static float data[3 * INPUT_H * INPUT_W];
- cv::Mat img = cv::imread(path);
- ProcessImage(img, data);
- auto end = std::chrono::system_clock::now();
- time_read_img = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_read_img;
-
-
-
- //Run inference
- start = std::chrono::system_clock::now(); //时间函数
- doInference(*context, data, prob, 1);
- end = std::chrono::system_clock::now();
- time_infer = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_infer;
- std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
-
- //输出后处理
- //std::cout <<"prob="<<prob << std::endl;
- float cls_float = prob[0];
- int cls_id = 0;
- for (int i = 0; i < OUTPUT_SIZE; i++) {
- if (cls_float < prob[i]) {
- cls_float = prob[i];
- cls_id = i;
- }
- }
- std::cout << "i=" << i << "\tcls_id=" << cls_id << "\t cls_float=" << cls_float << std::endl;
- }
-
- std::cout << "C++2engine" << "mean read img time =" << time_read_img / 1000 << "ms\t" << "mean infer img time =" << time_infer / 1000 << "ms" << std::endl;
-
-
-
-
-
-
- // Destroy the engine
- context->destroy();
- engine->destroy();
- runtime->destroy();
-
-
-
-
-
-
-
-
- return 0;
- }
-
-
-
- int main(int argc, char** argv)
- {
-
- infer();
-
- return 0;
- }
注:最终因环未在服务器验证ONNX转engine方法,但CMakeList可借鉴wts转engine。
六.Linux环境下编译engine(添加:20220914)
本节介绍如何使用编译命令在ubuntu(linux)环境中运行,我将使用C++ API构建的网络称为Cengine,将Onnx转换构建的网络称为Oengine,那么本节将介绍主要介绍CMakeLists.txt文件的构建:
Cengine的CMakeLists.txt构建:
- cmake_minimum_required(VERSION 2.6)
-
- project(resnet)
-
- add_definitions(-std=c++11)
-
- option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
- set(CMAKE_CXX_STANDARD 11)
- set(CMAKE_BUILD_TYPE Debug)
-
- include_directories(${PROJECT_SOURCE_DIR}/include)
- # include and link dirs of cuda and tensorrt, you need adapt them if yours are different
- # cuda
- include_directories(/usr/local/cuda/include)
- link_directories(/usr/local/cuda/lib64)
- # tensorrt
- include_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/include/)
- link_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/lib/)
-
- #include_directories(/usr/include/x86_64-linux-gnu/)
- #link_directories(/usr/lib/x86_64-linux-gnu/)
-
- # opencv
- find_package(OpenCV REQUIRED)
- include_directories(${OpenCV_INCLUDE_DIRS})
- add_executable(resnet18 ${PROJECT_SOURCE_DIR}/main.cpp)
- target_link_libraries(resnet18 nvinfer)
- target_link_libraries(resnet18 cudart)
- target_link_libraries(resnet18 ${OpenCV_LIBS})
-
- add_definitions(-O2 -pthread)
Oengine的CMakeLists.txt构建:
- cmake_minimum_required(VERSION 2.6)
- project(resnet)
- add_definitions(-std=c++11)
- option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
- set(CMAKE_CXX_STANDARD 11)
- set(CMAKE_BUILD_TYPE Debug)
- include_directories(${PROJECT_SOURCE_DIR}/include)
- # include and link dirs of cuda and tensorrt, you need adapt them if yours are different
- # cuda
- include_directories(/usr/local/cuda/include)
- link_directories(/usr/local/cuda/lib64)
- # tensorrt
- include_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/include/)
- link_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/lib/)
-
- include_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/samples/common/)
- #link_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/lib/stubs/)
-
- # opencv
- find_package(OpenCV REQUIRED)
- include_directories(${OpenCV_INCLUDE_DIRS})
-
- add_executable(resnet18 ${PROJECT_SOURCE_DIR}/main.cpp)
- target_link_libraries(resnet18 nvinfer)
- target_link_libraries(resnet18 cudart)
- target_link_libraries(resnet18 ${OpenCV_LIBS})
- target_link_libraries(resnet18 /home/ubuntu/soft/TensorRT-8.2.5.1/lib/stubs/libnvonnxparser.so
- )
- add_definitions(-O2 -pthread)
以上为ONNX及C++构建engine的cmakelists的语句,主要在于库的链接或头文件之类,相关可看其它博客或网上资料。
附带说明:以上Onnx的CmakeLists.txt语句已经在yolov5、yolov7中验证,可以编译运行。
ResNet代码在上面已有说明,我将不放在本博客中,其中细节代码在我发布的链接中可下载使用。
测试结果展示: