赞
踩
之前文章目标检测API 已经介绍过API的基本使用,这里就不赘述了,直接上本次内容的代码了,添加的内容并不多。将测试的test.mp4
原文件放到models-master\research\object_detection
路径下,并创建一个detect_video.py
文件,代码内容如下:
import os import cv2 import time import argparse import multiprocessing import numpy as np import tensorflow as tf from matplotlib import pyplot as plt import matplotlib # Matplotlib chooses Xwindows backend by default. matplotlib.use('Agg') from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util ''' 视频目标追踪 ''' # Path to frozen detection graph. This is the actual model that is used for the object detection. MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' PATH_TO_CKPT = os.path.join(MODEL_NAME, 'frozen_inference_graph.pb') # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) def detect_objects(image_np, sess, detection_graph): # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) return image_np #Load a frozen TF model detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') #import imageio #imageio.plugins.ffmpeg.download() # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip from IPython.display import HTML def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # you should return the final output (image with lines are drawn on lanes) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # 如果出现错误:ValueError: assignment destination is read-only,则将下面一行改为: # image_process = detect_objects(np.array(image), sess, detection_graph) image_process = detect_objects(image, sess, detection_graph) return image_process white_output = 'test_out.mp4' clip1 = VideoFileClip("test.mp4").subclip(1,9) white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!s white_clip.write_videofile(white_output, audio=False) HTML(""" <video width="960" height="540" controls> <source src="{0}"> </video> """.format(white_output))
检测结果:
更新一个独立的检测现有视频脚本,这样可以方便在任意路径使用:
from moviepy.editor import VideoFileClip from IPython.display import HTML import tensorflow as tf import cv2 as cv import time #Load a frozen TF model detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile('./frozen_inference_graph.pb', 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') def detect_objects(image, sess, detection_graph): height = image.shape[0] width = image.shape[1] channel = image.shape[2] start_time = time.time() # Run the model out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), sess.graph.get_tensor_by_name('detection_scores:0'), sess.graph.get_tensor_by_name('detection_boxes:0'), sess.graph.get_tensor_by_name('detection_classes:0')], feed_dict={'image_tensor:0': image.reshape(1, height, width, channel)}) end_time = time.time() runtime = end_time - start_time print('run time:%f' % (runtime * 1000) + 'ms') # Visualize detected bounding boxes. num_detections = int(out[0][0]) # Iterate through the number of checked out rectangular boxes on the picture for i in range(num_detections): classId = int(out[3][0][i]) score = float(out[1][0][i]) bbox = [float(v) for v in out[2][0][i]] if score > 0.8: # 这里的阈值自行修改即可 #print(score) x = bbox[1] * width y = bbox[0] * height right = bbox[3] * width bottom = bbox[2] * height # Draw rectangular box font = cv.FONT_HERSHEY_SIMPLEX # Use default fonts cv.rectangle(image, (int(x), int(y)), (int(right), int(bottom)), (0, 0, 255), thickness=2) cv.putText(image, '{}:'.format(classId) + str(('%.3f' % score)), (int(x), int(y - 9)), font, 0.6, (0, 0, 255), 1) return image def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # you should return the final output (image with lines are drawn on lanes) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image_process = detect_objects(image, sess, detection_graph) return image_process white_output = 'test_out.mp4' # 使用 VideoFileClip 函数从视频中抓取图片,subclip(1,9)代表识别视频中1-9s这一时间段 clip1 = VideoFileClip("test.mp4").subclip(1,9) # 用fl_image函数将原图片替换为修改后的图片,用于传递物体识别的每张抓取图片 white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! # 修改的剪辑图像被组合成为一个新的视频 white_clip.write_videofile(white_output, audio=False) HTML(""" <video width="960" height="540" controls> <source src="{0}"> </video> """.format(white_output))
上面的对现有的视频中目标进行检测的,那么怎样实时的对现实生活中的目标进行检测呢?这个其实也很简单,我们来创建一个object_detection_tutorial_video.py
文件,具体的代码如下:
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile import matplotlib import cv2 # Matplotlib chooses Xwindows backend by default. matplotlib.use('Agg') from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image from utils import label_map_util from utils import visualization_utils as vis_util ''' 检测视频中的目标 ''' cap = cv2.VideoCapture(0) #打开摄像头 ##################### Download Model # What model to download. MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 # Download model if not already downloaded if not os.path.exists(PATH_TO_CKPT): print('Downloading model... (This may take over 5 minutes)') opener = urllib.request.URLopener() opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) print('Extracting...') tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) else: print('Model already downloaded.') ##################### Load a (frozen) Tensorflow model into memory. print('Loading model...') detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') ##################### Loading label map print('Loading label map...') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) ##################### Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) ##################### Detection ########### print('Detecting...') with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # print(TEST_IMAGE_PATH) # image = Image.open(TEST_IMAGE_PATH) # image_np = load_image_into_numpy_array(image) while True: ret, image_np = cap.read() #从摄像头中获取每一帧图像 image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') boxes = detection_graph.get_tensor_by_name('detection_boxes:0') scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Print the results of a detection. print(scores) print(classes) print(category_index) vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) cv2.imshow('object detection', cv2.resize(image_np, (800, 600))) #cv2.waitKey(0) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break
代码中只是添加了摄像头来获取每一帧图像,处理方式和静态的图片差不多,这里就不多说了。这里就不上测试的结果了,大家课可以实际的跑一下程序即可看到结果。
更新一个单独运行的实时获取摄像头进行检测脚本:
import argparse import tensorflow as tf import numpy as np import time import cv2 as cv ''' video det use: python Video.py \ --model=xxx.pb \ --threshold=0.65 ''' # os.environ['CUDA_VISIBLE_DEVICES'] = "0" parser = argparse.ArgumentParser('TensorFlow') parser.add_argument('--model', required=True, help='pb file') parser.add_argument('--threshold', type=float, required=True, help='Detection threshold') args = parser.parse_args() # open camera cap = cv.VideoCapture(0) if not cap.isOpened(): print("cannot open camera") exit() # Read the graph. with tf.gfile.FastGFile(args.model, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: # Restore session sess.graph.as_default() tf.import_graph_def(graph_def, name='') while True: ret, image_np = cap.read() if not ret: print("Cant't receive frame. Exiting....") break height = image_np.shape[0] width = image_np.shape[1] channel = image_np.shape[2] image_np_expanded = np.expand_dims(image_np, axis=0) start_time = time.time() # Run the model out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), sess.graph.get_tensor_by_name('detection_scores:0'), sess.graph.get_tensor_by_name('detection_boxes:0'), sess.graph.get_tensor_by_name('detection_classes:0')], feed_dict={'image_tensor:0': image_np_expanded}) end_time = time.time() runtime = end_time - start_time print('run time:%f' % (runtime * 1000) + 'ms') # Visualize detected bounding boxes. num_detections = int(out[0][0]) for i in range(num_detections): classId = int(out[3][0][i]) score = float(out[1][0][i]) bbox = [float(v) for v in out[2][0][i]] if score > args.threshold: x = bbox[1] * width y = bbox[0] * height right = bbox[3] * width bottom = bbox[2] * height # draw boxes font = cv.FONT_HERSHEY_SIMPLEX cv.rectangle(image_np, (int(x), int(y)), (int(right), int(bottom)), (0, 0, 255), thickness=2) cv.putText(image_np, '{}:'.format(classId) + str(('%.3f' % score)), (int(x), int(y - 9)), font, 0.6, (0, 0, 255), 1) cv.imshow('object detection', cv.resize(image_np, (800, 600))) if cv.waitKey(1) == ord('q'): break cap.release() cv.destroyAllWindows()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。