赞
踩
(1)简介
MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.
网络模型
(2)代码
- # library
- # standard library
- import os
-
- # third-party library
- import torch
- import torch.nn as nn
- import torch.utils.data as Data
- import torchvision
- import matplotlib.pyplot as plt
-
- # torch.manual_seed(1) # reproducible
-
- # Hyper Parameters
- EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
- BATCH_SIZE = 50
- LR = 0.001 # learning rate
- DOWNLOAD_MNIST = False
-
-
- # Mnist digits dataset
- if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
- # not mnist dir or mnist is empyt dir
- DOWNLOAD_MNIST = True
-
- train_data = torchvision.datasets.MNIST(
- root='./mnist/',
- train=True, # this is training data
- transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
- # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
- download=DOWNLOAD_MNIST,
- )
-
- # plot one example
- print(train_data.train_data.size()) # (60000, 28, 28)
- print(train_data.train_labels.size()) # (60000)
- plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
- plt.title('%i' % train_data.train_labels[0])
- plt.show()
-
- # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
- train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
-
- # pick 2000 samples to speed up testing
- test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
- test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
- test_y = test_data.test_labels[:2000]
-
-
- class CNN(nn.Module):
- def __init__(self):
- super(CNN, self).__init__()
- self.conv1 = nn.Sequential( # input shape (1, 28, 28)
- nn.Conv2d(
- in_channels=1, # input height
- out_channels=16, # n_filters
- kernel_size=5, # filter size
- stride=1, # filter movement/step
- padding=2, # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
- ), # output shape (16, 28, 28)
- nn.ReLU(), # activation
- nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14)
- )
- self.conv2 = nn.Sequential( # input shape (16, 14, 14)
- nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
- nn.ReLU(), # activation
- nn.MaxPool2d(2), # output shape (32, 7, 7)
- )
- self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv2(x)
- x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
- output = self.out(x)
- return output, x # return x for visualization
-
-
- cnn = CNN()
- print(cnn) # net architecture
-
- optimizer = torch.optim.RMSprop(cnn.parameters(), lr=LR) # optimize all cnn parameters
- loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
-
- # following function (plot_with_labels) is for visualization, can be ignored if not interested
- from matplotlib import cm
- try: from sklearn.manifold import TSNE; HAS_SK = True
- except: HAS_SK = False; print('Please install sklearn for layer visualization')
- def plot_with_labels(lowDWeights, labels):
- plt.cla()
- X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
- for x, y, s in zip(X, Y, labels):
- c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
- plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)
-
- plt.ion()
- # training and testing
- for epoch in range(EPOCH):
- for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader
-
- output = cnn(b_x)[0] # cnn output
- loss = loss_func(output, b_y) # cross entropy loss
- optimizer.zero_grad() # clear gradients for this training step
- loss.backward() # backpropagation, compute gradients
- optimizer.step() # apply gradients
-
- if step % 50 == 0:
- test_output, last_layer = cnn(test_x)
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
- print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
- if HAS_SK:
- # Visualization of trained flatten layer (T-SNE)
- tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
- plot_only = 500
- low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
- labels = test_y.numpy()[:plot_only]
- plot_with_labels(low_dim_embs, labels)
- plt.ioff()
-
- # print 10 predictions from test data
- test_output, _ = cnn(test_x[:10])
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- print(pred_y, 'prediction number')
- print(test_y[:10].numpy(), 'real number')

(3)结果图
注:文中代码主要参考:https://github.com/MorvanZhou
了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:
下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。