赞
踩
在经历了看论文,看源码,看Bert源码之后,整理思路,实现了一下Transformer,并搭建了一个小型的Transformer做了一下SNLI任务。
同时吸取以前的教训,这次好好的写了注释
原理不再重述,其他博客中讲的很好,
比如:https://jalammar.github.io/illustrated-transformer/
和他的翻译版:https://blog.csdn.net/qq_41664845/article/details/84969266
直接进入代码
Transformer原文中使用的都是Relu,但Bert包括之后的工作,大多采用的是Gelu(高斯误差线性单元),效果更好(只是参考了论文中的数据对比,还并未亲自实验对比)。
抱着举贤不举亲的原则,就算平时使用的大多Relu,在此也将默认的激活函数设为Gelu。
关于Gelu的原论文:https://arxiv.org/abs/1606.08415
Gelu:
- def gelu(inputs):
- """
- gelu: https://arxiv.org/abs/1606.08415
- :param inputs: [Tensor]
- :return: [Tensor] outputs after activation
- """
- cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2 / np.pi) * (inputs + 0.044715 * tf.pow(inputs, 3))))
- return inputs * cdf
获得激活函数的方法(设置默认gelu):
- def get_activation(activation_name):
- """
- get activate function
- :param activation_name: [Tensor]
- :return: [Function] activation function
- """
- if activation_name is None:
- return gelu
- else:
- act = activation_name.lower()
- if act == "relu":
- return tf.nn.relu
- elif act == "gelu":
- return gelu
- elif act == "tanh":
- return tf.tanh
- else:
- raise ValueError("Unsupported activation: %s" % act)
Transformer除了词嵌入,还做了位置嵌入(Positional Encoding),来使每个单词携带位置信息,否则可以想象它只是一个复杂一些的,通过训练获得每个单词权重的词袋模型了。
同时为了完成SNLI这类需要最终输出shape一致的任务,采用了Bert的想法,对每个输入的起始加入[CLS]token,使用该token的最终输出做预测,而这样做的话,需要加入segment embedding来更好的区分两个不同的句子(参考Bert)
这里可以通过随机初始化嵌入矩阵,也可以通过载入其他任务(比如Glove,Fast text)产生的词嵌入矩阵来完成这部分,只需要在restore的时候声明一下即可。paper中提到需要对embedding做scale,这里照做。
- def get_embedding(inputs, vocab_size, channels, scale=True, scope="embedding", reuse=None):
- """
- embedding
- :param inputs: [Tensor] Tensor with first dimension of "batch_size"
- :param vocab_size: [Int] Vocabulary size
- :param channels: [Int] Embedding size
- :param scale: [Boolean] If True, the output will be multiplied by sqrt num_units
- :param scope: [String] name of "variable_scope"
- :param reuse: [Boolean] tf parameter reuse
- :return: [Tensor] outputs of embedding of sentence with shape of "batch_size * length * channels"
- """
- with tf.variable_scope(scope, reuse=reuse):
- lookup_table = tf.get_variable('lookup_table',
- dtype=tf.float32,
- shape=[vocab_size, channels],
- initializer=tf.contrib.layers.xavier_initializer())
- lookup_table = tf.concat((tf.zeros(shape=[1, channels], dtype=tf.float32),
- lookup_table[1:, :]), 0)
-
- outputs = tf.nn.embedding_lookup(lookup_table, inputs)
-
- if scale:
- outputs = outputs * math.sqrt(channels)
-
- return outputs
获得和inputs经过word embedding之后相同shape的位置嵌入,没有使用word embedding之后的作为输入,是考虑这样可以为之后的mask提供便利
- def get_positional_encoding(inputs, channels, scale=False, scope="positional_embedding", reuse=None):
- """
- positional encoding
- :param inputs: [Tensor] with dimension of "batch_size * max_length"
- :param channels: [Int] Embedding size
- :param scale: [Boolean] If True, the output will be multiplied by sqrt num_units
- :param scope: [String] name of "variable_scope"
- :param reuse: [Boolean] tf parameter reuse
- :return: [Tensor] outputs after positional encoding
- """
- batch_size = tf.shape(inputs)[0]
- max_length = tf.shape(inputs)[1]
- with tf.variable_scope(scope, reuse=reuse):
- position_ind = tf.tile(tf.expand_dims(tf.range(tf.to_int32(1), tf.add(max_length, 1)), 0), [batch_size, 1])
-
- # Convert to a tensor
- lookup_table = tf.convert_to_tensor(get_timing_signal_1d(max_length, channels))
-
- lookup_table = tf.concat((tf.zeros(shape=[1, channels]),
- lookup_table[:, :]), 0)
- position_inputs = tf.where(tf.equal(inputs, 0), tf.zeros_like(inputs), position_ind)
-
- outputs = tf.nn.embedding_lookup(lookup_table, position_inputs)
-
- if scale:
- outputs = outputs * math.sqrt(channels)
-
- return tf.cast(outputs, tf.float32)
通过get_timing_signal_1d()方法获得 [ 句子长度 * embedding维度 ]的矩阵
- def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4, start_index=0):
- """
- positional encoding的方法
- :param length: [Int] max_length size
- :param channels: [Int] Embedding size
- :param min_timescale: [Float]
- :param max_timescale: [Float]
- :param start_index: [Int] index of first position
- :return: [Tensor] positional encoding of shape "length * channels"
- """
- position = tf.to_float(tf.range(start_index, length))
- num_timescales = channels // 2
- log_timescale_increment = (math.log(float(min_timescale) / float(max_timescale)) /
- (tf.to_float(num_timescales) - 1))
- inv_timescales = min_timescale * tf.exp(tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
-
- scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)
- signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
- signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
- return signal
该嵌入仅仅是为了让模型能够更好的区分输入的两个句子,其实通过[SEP]这个token以及能够区分两个句子了,但是对于模型来说显然还不够,在不加入segment embedding的情况下,模型的表现不太良好。
对于[PAD]这个token,所有的embedding(seg、pos)都设为了全零向量,以便后面attention的时候加入mask
- def get_seg_embedding(inputs, channels, scale=True, scope="seg_embedding", reuse=None):
- """
- segment embedding
- :param inputs: [Tensor] with first dimension of "batch_size" like [1 1 1 2 2 2 2 0 0 0 ...]
- :param channels: [Int] Embedding size
- :param scale: [Boolean] If True, the output will be multiplied by sqrt num_units
- :param scope: [String] name of "variable_scope"
- :param reuse: [Boolean] tf parameter reuse
- :return: [Tensor] outputs of embedding of sentence with shape of "batch_size * length * channels"
- """
- with tf.variable_scope(scope, reuse=reuse):
- lookup_table = tf.get_variable('lookup_table',
- dtype=tf.float32,
- shape=[3, channels],
- initializer=tf.contrib.layers.xavier_initializer())
- lookup_table = tf.concat((tf.zeros(shape=[1, channels], dtype=tf.float32),
- lookup_table[1:, :]), 0)
-
- outputs = tf.nn.embedding_lookup(lookup_table, inputs)
- if scale:
- outputs = outputs * math.sqrt(channels)
-
- return outputs
到这里,输入的处理就算完成了,到了重头戏Attention机制
两个输入的tensor总觉的一行用英语讲不清楚,就写在这里吧,from tensor对于两个Attention都是一致的就是输入,to tensor对于self-attention来说也是一致的,但对于encoder-decoder attention来说是最后一层encoder的输出,用来捕捉decoder和encoder之间的attention关系。
因为前面做了处理,所有的[PAD]这个token的embedding都是全零,所以对这个维度求绝对值后reduce sum之后,零就是[PAD]这个token,这样就不用再额外的添加一个mask ids作为输入了。
按照paper中的描述
- def multi_head_attention(from_tensor: tf.Tensor, to_tensor: tf.Tensor, channels=None, num_units=None, num_heads=8,
- dropout_rate=0, is_training=True, attention_mask_flag=False, scope="multihead_attention",
- activation=None, reuse=None):
- """
- multihead attention
- :param from_tensor: [Tensor]
- :param to_tensor: [Tensor]
- :param channels: [Int] channel of last dimension of output
- :param num_units: [Int] channel size of matrix Q, K, V
- :param num_heads: [Int] head number of attention
- :param dropout_rate: [Float] dropout rate when 0 means no dropout
- :param is_training: [Boolean] whether it is training, If true, use dropout
- :param attention_mask_flag: [Boolean] If true, units that reference the future are masked
- :param scope: [String] name of "variable_scope"
- :param activation: [String] name of activate function
- :param reuse: [Boolean] tf parameter reuse
- :return: [Tensor] outputs after multihead self attention with shape of "batch_size * max_length * (channels*num_heads)"
- """
- with tf.variable_scope(scope, reuse=reuse):
- if channels is None:
- channels = from_tensor.get_shape().as_list()[-1]
- if num_units is None:
- num_units = channels//num_heads
- activation_fn = get_activation(activation)
- # shape [batch_size, max_length, channels*num_heads]
- query_layer = tf.layers.dense(from_tensor, num_units * num_heads, activation=activation_fn)
- key_layer = tf.layers.dense(to_tensor, num_units * num_heads, activation=activation_fn)
- value_layer = tf.layers.dense(to_tensor, num_units * num_heads, activation=activation_fn)
-
- # shape [batch_size*num_heads, max_length, channels]
- query_layer_ = tf.concat(tf.split(query_layer, num_heads, axis=2), axis=0)
- key_layer_ = tf.concat(tf.split(key_layer, num_heads, axis=2), axis=0)
- value_layer_ = tf.concat(tf.split(value_layer, num_heads, axis=2), axis=0)
-
- # shape = [batch_size*num_heads, max_length, max_length]
- attention_scores = tf.matmul(query_layer_, tf.transpose(key_layer_, [0, 2, 1]))
- # Scale
- attention_scores = tf.multiply(attention_scores, 1.0 / tf.sqrt(float(channels)))
- # attention masks
- attention_masks = tf.sign(tf.abs(tf.reduce_sum(to_tensor, axis=-1)))
- attention_masks = tf.tile(attention_masks, [num_heads, 1])
- attention_masks = tf.tile(tf.expand_dims(attention_masks, axis=1), [1, tf.shape(from_tensor)[1], 1])
- neg_inf_matrix = tf.multiply(tf.ones_like(attention_scores), (-math.pow(2, 32) + 1))
- attention_scores = tf.where(tf.equal(attention_masks, 0), neg_inf_matrix, attention_scores)
-
- if attention_mask_flag:
- diag_vals = tf.ones_like(attention_scores[0, :, :])
- tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense()
-
- masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(attention_scores)[0], 1, 1])
- neg_inf_matrix = tf.multiply(tf.ones_like(masks), (-math.pow(2, 32) + 1))
- attention_scores = tf.where(tf.equal(masks, 0), neg_inf_matrix, attention_scores)
-
- # attention probability
- attention_probs = tf.nn.softmax(attention_scores)
-
- # query mask
- query_masks = tf.sign(tf.abs(tf.reduce_sum(from_tensor, axis=-1)))
- query_masks = tf.tile(query_masks, [num_heads, 1])
- query_masks = tf.tile(tf.expand_dims(query_masks, -1), [1, 1, tf.shape(to_tensor)[1]])
-
- attention_probs *= query_masks
-
- # dropout
- attention_probs = tf.layers.dropout(attention_probs, rate=dropout_rate,
- training=tf.convert_to_tensor(is_training))
- outputs = tf.matmul(attention_probs, value_layer_)
- # shape [batch_size, max_length, channels*num_heads]
- outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2)
-
- # reshape to from tensor
- outputs = tf.layers.dense(outputs, channels, activation=activation_fn)
- # Residual connection
- outputs += from_tensor
- # group normalization
- outputs = group_norm(outputs)
- return outputs
论文中的Position-wise Feed-Forward Networks,论文中第二层的激活函数为线性激活函数,将第二层的activation function参数改为None才是原论文的做法,这里出于一些实验的原因没有照做
- def feed_forward(inputs, channels, hidden_dims=None, scope="multihead_attention", activation=None, reuse=None):
- """
- :param inputs: [Tensor] with first dimension of "batch_size"
- :param channels: [Int] Embedding size
- :param hidden_dims: [List] hidden dimensions
- :param scope: [String] name of "variable_scope"
- :param activation: [String] name of activate function
- :param reuse: [Boolean] tf parameter reuse
- :return: [Tensor] outputs after feed forward with shape of "batch_size * max_length * channels"
- """
- if hidden_dims is None:
- hidden_dims = 2*channels
- with tf.variable_scope(scope, reuse=reuse):
- activation_fn = get_activation(activation)
-
- params = {"inputs": inputs, "num_outputs": hidden_dims, "activation_fn": activation_fn}
- outputs = tf.contrib.layers.fully_connected(**params)
-
- params = {"inputs": outputs, "num_outputs": channels, "activation_fn": activation_fn} # activation_fn可以改为None
- outputs = tf.contrib.layers.fully_connected(**params)
- outputs += inputs
- outputs = group_norm(outputs)
- return outputs
对了,还有layer normalization。
- def group_norm(inputs: tf.Tensor, epsilon=1e-8, scope="layer_normalization", reuse=None):
- """
- layer normalization
- :param inputs: [Tensor] with first dimension of "batch_size"
- :param epsilon: [Float] a number for preventing ZeroDivision
- :param scope: [String] name of "variable_scope"
- :param reuse: [Boolean] tf parameter reuse
- :return: [Tensor] outputs after normalized
- """
- with tf.variable_scope(scope, reuse=reuse):
- inputs_shape = inputs.get_shape()
- params_shape = inputs_shape[-1:]
- mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
- beta = tf.Variable(tf.zeros(params_shape))
- gamma = tf.Variable(tf.ones(params_shape))
- normalized = (inputs - mean) * tf.rsqrt(variance + epsilon)
- outputs = gamma * normalized + beta
- return outputs
基本工作都做好了,接下来使用之前写好的代码来搭建一个6层的Transformer
先定义一些模型的细节配置:
- class ConfigModel(object):
- vocab_size_en = len(word_dict_en)
- channels = 400
- learning_rate = 0.0005
- layer_num = 6
- is_training = True
- is_transfer_learning = False
- restore_embedding = False
- shuffle_pool_size = 2560
- dropout_rate = 0.1
- num_heads = 8
- batch_size = 64
- max_length = 100
- num_tags = 3
然后搭建模型,整体按照Bert的思路搭建,最后取 [CLS] token的输出:
- class TransformerSNLICls():
- def __init__(self, inputs, segs, label, config):
- self.inputs = tf.to_int32(inputs) # batch_size*max_length
- self.segs = tf.to_int32(segs) # 标识属于第几个句子 ([1 1 2 2 2 0 0 0 ...])
- self.target = tf.to_int32(label)
- self.vocab_size_en = config.vocab_size_en
- self.channels = config.channels
- self.num_heads = config.num_heads
- self.dropout_rate = config.dropout_rate
- self.is_training = config.is_training
- self.num_layer = config.layer_num
- self.learning_rate = config.learning_rate
- # {'_PAD': 0, '_BEGIN': 1, '_EOS': 2, '_CLS': 3, '_SEP': 4, '_MASK': 5}
- self.inputs = tf.concat((tf.ones_like(self.inputs[:, :1])*3, self.inputs), axis=-1)
- self.segs = tf.concat((tf.ones_like(self.segs[:, :1]), self.segs), axis=-1)
-
- with tf.variable_scope("encoder"):
- self.encode = get_embedding(self.inputs, self.vocab_size_en, self.channels, scope="en_embed")
- self.encode += get_positional_encoding(self.inputs, self.channels, scope="en_pe")
- self.encode += get_seg_embedding(self.segs, self.channels, scope="en_se")
- self.encode = tf.layers.dropout(self.encode, rate=self.dropout_rate,
- training=tf.convert_to_tensor(self.is_training))
- for i in range(self.num_layer):
- with tf.variable_scope("encoder_layer_{}".format(i)):
- self.encode = multi_head_attention(self.encode, self.encode, self.channels,
- num_heads=self.num_heads,
- dropout_rate=self.dropout_rate,
- is_training=self.is_training,
- attention_mask_flag=False)
- self.encode = feed_forward(self.encode, self.channels)
- self.encode_cls = tf.reshape(self.encode[:, :1, :], [-1, self.channels])
-
- self.output = tf.layers.dense(self.encode_cls, config.num_tags)
- self.preds = tf.to_int32(tf.argmax(self.output, axis=-1))
- self.acc = tf.reduce_mean(tf.to_float(tf.equal(self.preds, self.target)))
- if self.is_training:
- self.loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.output, labels=self.target))
- self.global_step = tf.Variable(0, name='global_step', trainable=False)
- self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate,
- beta1=0.9, beta2=0.98, epsilon=1e-8)
- self.grads = self.optimizer.compute_gradients(self.loss)
- if config.is_transfer_learning:
- var_list = tf.trainable_variables()
- layer_name_list = ["encoder_layer_" + str(i) for i in range(4)]
- var_list_ = [v for v in var_list if v.name.split("/")[1] in layer_name_list]
- var_list_ += [v for v in var_list if "lookup_table" in v.name]
- for index, grad in enumerate(self.grads):
- if grad[1] in var_list_:
- self.grads[index] = (grad[0]*0.2, grad[1])
- self.train_op = self.optimizer.apply_gradients(self.grads, global_step=self.global_step)
到这里模型就准备好了,接下来对数据进行一些处理
将所有数据进行处理并生成segment ids:
- def get_data(snli_name, max_length=config.max_length//2, word_dict=word_dict_en):
- sentence_1 = list()
- sentence_2 = list()
- label = list()
- texts = list()
- seg_ids = list()
- with open(os.path.join(data_path, snli_name), 'r') as f:
- for item in jsonlines.Reader(f):
- try:
- label.append(label_to_num_dict[item["gold_label"]])
- except KeyError:
- continue
- sentence_1.append(normalize_text(item["sentence1"]))
- sentence_2.append(normalize_text(item["sentence2"]))
-
- en_data_num_1 = text_to_numbers(sentence_1, word_dict_en, max_length=max_length)
- en_data_num_2 = text_to_numbers(sentence_2, word_dict_en, max_length=max_length)
-
- for i_ in range(len(en_data_num_1)):
- texts.append(en_data_num_1[i_] + [word_dict["_SEP"]] + en_data_num_2[i_] + [word_dict["_SEP"]])
- seg_ids.append((len(en_data_num_1[i_])+1)*[1]+(len(en_data_num_2[i_])+1)*[2])
- return texts, label, seg_ids
并转换为tf record格式,以便tensorflow 更高效的读取:
- def write_binary(record_name, texts_, label_, seg_ids_):
- writer = tf.python_io.TFRecordWriter(record_name)
- for it, text in tqdm(enumerate(texts_)):
- example = tf.train.Example(
- features=tf.train.Features(
- feature={
- "text_ids": tf.train.Feature(int64_list=tf.train.Int64List(value=text)),
- "seg_ids": tf.train.Feature(int64_list=tf.train.Int64List(value=seg_ids_[it])),
- "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label_[it]])),
- }
- )
- )
- serialized = example.SerializeToString()
- writer.write(serialized)
- writer.close()
加载模型,加载数据:
- if __name__ == '__main__':
- with tf.Session() as sess:
- data_set_train = get_dataset(train_snli_name_tf)
- data_set_train = data_set_train.shuffle(config.shuffle_pool_size).repeat(). \
- padded_batch(config.batch_size, padded_shapes=([config.max_length], [config.max_length], []))
- data_set_train_iter = data_set_train.make_one_shot_iterator()
- train_handle = sess.run(data_set_train_iter.string_handle())
-
- data_set_test = get_dataset(os.path.join(test_snli_name_tf))
- if test_total_acc:
- data_set_test = data_set_test.shuffle(config.shuffle_pool_size). \
- padded_batch(config.batch_size, padded_shapes=([config.max_length], [config.max_length], []))
- else:
- data_set_test = data_set_test.shuffle(config.shuffle_pool_size).repeat(). \
- padded_batch(config.batch_size, padded_shapes=([config.max_length], [config.max_length], []))
- data_set_test_iter = data_set_test.make_one_shot_iterator()
- test_handle = sess.run(data_set_test_iter.string_handle())
-
- handle = tf.placeholder(tf.string, shape=[])
- iterator = tf.data.Iterator.from_string_handle(handle, data_set_train.output_types,
- data_set_train.output_shapes)
-
- inputs, segs, target = iterator.get_next()
-
- tsl = TransformerSNLICls(inputs, segs, target, config)
- sess.run(tf.global_variables_initializer())
- saver = tf.train.Saver(max_to_keep=1)
开始训练:
- print("starting training")
- for i in range(12000):
- train_feed = {handle: train_handle}
- sess.run(tsl.train_op, train_feed)
- if (i+1) % 100 == 0:
- pred, acc, loss = sess.run([tsl.preds, tsl.acc, tsl.loss], train_feed)
- print("Generation train {} : acc: {} loss: {} ".format(i, acc, loss))
- if (i+1) % 200 == 0:
- tpred, tacc, tloss = sess.run([tsl.preds, tsl.acc, tsl.loss], {handle: test_handle})
- print("Generation test {} : acc: {} loss: {} ".format(i, tacc, tloss))
- if (i+1) % 2000 == 0:
- print("Generation train {} model saved ".format(i))
- saver.save(sess, os.path.join(model_save_path, model_name.format(model_choose)))
- saver.save(sess, os.path.join(model_save_path, model_name.format(model_choose)))
最后,初步在整个测试集上达到78.7%的准确度
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。