当前位置:   article > 正文

八种点云聚类方法(一)— DBSCAN_点云聚类算法

点云聚类算法

本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。

  传统机器学习聚类的方法有很多种,并且很多都能够应用在点云上。这是由于聚类方法一般是针对于通用样本,只是样本的维度有所不同。对于三维点云来说,其样本的维度为3。这里主要介绍几种典型的方法及其实现方式,包括DBSCAN、KMeans等聚类方法,采用python open3d和skit-learn来实现。

1 DBSCAN点云聚类

        DBSCAN聚类是一种基于密度的聚类算法,大体思想是根据样本点的密度和连通性,将密度满足要求且密度可达的点设置为同一类。

        open3d中DBSCAN聚类方法的函数为cluster_dbscan。第一个参数eps表示DBSCAN算法确定点密度时和邻近点的距离大小,即考虑eps距离范围内的点进行密度计算。min_points表示组成一类最少需要多少个点。print_progress可以用来显示运行的进度。labels返回聚类成功的类别,-1表示没有分到任何类中的点,原始点云中每个点都会分别得到一个类别标签。

  1. labels=pcd.cluster_dbscan(eps, min_points, print_progress=False)
  2. #labels返回聚类成功的类别,-1表示没有分到任何类中的点

2 python open3d程序

 pcd文件请参考:pcd格式点云

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/394221
推荐阅读
相关标签
  

闽ICP备14008679号