赞
踩
本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
传统机器学习聚类的方法有很多种,并且很多都能够应用在点云上。这是由于聚类方法一般是针对于通用样本,只是样本的维度有所不同。对于三维点云来说,其样本的维度为3。这里主要介绍几种典型的方法及其实现方式,包括DBSCAN、KMeans等聚类方法,采用python open3d和skit-learn来实现。
DBSCAN聚类是一种基于密度的聚类算法,大体思想是根据样本点的密度和连通性,将密度满足要求且密度可达的点设置为同一类。
open3d中DBSCAN聚类方法的函数为cluster_dbscan。第一个参数eps表示DBSCAN算法确定点密度时和邻近点的距离大小,即考虑eps距离范围内的点进行密度计算。min_points表示组成一类最少需要多少个点。print_progress可以用来显示运行的进度。labels返回聚类成功的类别,-1表示没有分到任何类中的点,原始点云中每个点都会分别得到一个类别标签。
- labels=pcd.cluster_dbscan(eps, min_points, print_progress=False)
- #labels返回聚类成功的类别,-1表示没有分到任何类中的点
pcd文件请参考:pcd格式点云
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。