赞
踩
最近在训练Yolov8-Pose时遇到一个问题,就是如何将自己使用labelme标注的Json文件转化成可用于Yolov8-Pose训练的txt文件。
具体代码有以下:
-
-
- import os
- import json
- import numpy as np
- import glob
- import shutil
- np.random.seed(41)
- import cv2
-
- #0为背景
- classname_to_id = {"person": 1}
-
- class Lableme2CoCo:
-
- def __init__(self, splitDir=''):
- self.images = []
- self.annotations = []
- self.categories = []
- self.img_id = 0
- self.ann_id = 0
- self.splitDir = splitDir
-
- def save_coco_json(self, instance, save_path):
- json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1) # indent=2 更加美观显示
-
- # 由json文件构建COCO
- def to_coco(self, json_path_list):
- self._init_categories()
- for json_path in json_path_list:
- # print(type(json_path))
- obj = self.read_jsonfile(json_path)
- self.images.append(self._image(obj, json_path))
-
- shapes = obj['shapes']
- groupIds = []
- for shape in shapes:
- groupId = shape['group_id']
- groupIds.append(groupId)
- for i in set(groupIds):
- keyPoints = [0] * 51
- keyPointNum = 0
- bbox = []
-
- for shape in shapes:
- if i != shape['group_id']:
- continue
- if shape['shape_type'] == "point":
- labelNum = int(shape['label'])
- keyPoints[labelNum * 3 + 0] = int(shape['points'][0][0] + 0.5)
- keyPoints[labelNum * 3 + 1] = int(shape['points'][0][1] + 0.5)
- keyPoints[labelNum * 3 + 2] = 2
- keyPointNum += 1
- if shape['shape_type'] == 'rectangle':
- x0, y0, x1, y1 = shape['points'][0][0], shape['points'][0][1], \
- shape['points'][1][0], shape['points'][1][1]
- xmin = min(x0, x1)
- ymin = min(y0, y1)
- xmax = max(x0, x1)
- ymax = max(y0, y1)
-
- bbox = [xmin, ymin, xmax - xmin, ymax - ymin]
-
- annotation = self._annotation(bbox, keyPoints, keyPointNum)
- self.annotations.append(annotation)
- self.ann_id += 1
- self.img_id += 1
-
- # for shape in shapes:
- # label = shape['label']
- # if label != 'person':
- # continue
- #
- # annotation = self._annotation(shape)
- # self.annotations.append(annotation)
- # self.ann_id += 1
- # self.img_id += 1
- instance = {}
- instance['info'] = 'spytensor created'
- instance['license'] = ['license']
- instance['images'] = self.images
- instance['annotations'] = self.annotations
- instance['categories'] = self.categories
- return instance
-
- # 构建类别
- def _init_categories(self):
- for k, v in classname_to_id.items():
- category = {}
- category['id'] = v
- category['name'] = k
- self.categories.append(category)
-
- # 构建COCO的image字段
- def _image(self, obj, jsonPath):
- image = {}
- # img_x = utils.img_b64_to_arr(obj['imageData'])
- # h, w = img_x.shape[:-1]
- jpgPath = jsonPath.replace('.json', '.jpg')
- jpgData = cv2.imread(jpgPath)
- h, w, _ = jpgData.shape
-
- image['height'] = h
- image['width'] = w
- image['id'] = self.img_id
-
- # image['file_name'] = os.path.basename(jsonPath).replace(".json", ".jpg")
- image['file_name'] = jpgPath.split(self.splitDir)[-1].replace('\\', '/')
-
-
- return image
-
- # 构建COCO的annotation字段
- def _annotation(self, bbox, keyPoints, keyNum):
- annotation = {}
-
- annotation['id'] = self.ann_id
- annotation['image_id'] = self.img_id
- annotation['category_id'] = 1
- # annotation['segmentation'] = [np.asarray(points).flatten().tolist()]
- annotation['segmentation'] = []
- annotation['bbox'] = bbox
- annotation['iscrowd'] = 0
- annotation['area'] = bbox[2] * bbox[3]
- annotation['keypoints'] = keyPoints
- annotation['num_keypoints'] = keyNum
-
- return annotation
-
- # 读取json文件,返回一个json对象
- def read_jsonfile(self, path):
- with open(path, "r", encoding='utf-8') as f:
- return json.load(f)
-
- # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
- def _get_box(self, points):
- min_x = min_y = np.inf
- max_x = max_y = 0
- for x, y in points:
- min_x = min(min_x, x)
- min_y = min(min_y, y)
- max_x = max(max_x, x)
- max_y = max(max_y, y)
- return [min_x, min_y, max_x - min_x, max_y - min_y]
-
-
- if __name__ == '__main__':
-
- labelme_path = r"G:\XRW\Data\selfjson"
- print(labelme_path)
- jsonName = labelme_path.split('\\')[-1]
- saved_coco_path = r"G:\XRW\Data\mycoco"
- print(saved_coco_path)
- #####################################
- # 这个一定要注意
- # 为了方便合入coco数据, 定义截断文件的文件夹与文件名字
- splitDirFlag = 'labelMePoint\\'
- ######################################
-
- # 创建文件
- if not os.path.exists("%s/annotations/"%saved_coco_path):
- os.makedirs("%s/annotations/"%saved_coco_path)
- json_list_path = glob.glob(os.path.join(labelme_path, '*.json'))
-
- train_path, val_path = json_list_path, ''
- # print(train_path)
- print("train_n:", len(train_path), 'val_n:', len(val_path))
-
- # 把训练集转化为COCO的json格式
- l2c_train = Lableme2CoCo(splitDirFlag)
- # print(train_path)
- train_instance = l2c_train.to_coco(train_path)
- l2c_train.save_coco_json(train_instance, '%s/annotations/%s.json'%(saved_coco_path, jsonName))
-
-
labelme_path:自己标注的json文件路径
saved_coco_path:生成的CoCo格式保存位置
运行代码得到
utils.py
- import glob
- import os
- import shutil
- from pathlib import Path
-
- import numpy as np
- from PIL import ExifTags
- from tqdm import tqdm
-
- # Parameters
- img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
- vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
-
- # Get orientation exif tag
- for orientation in ExifTags.TAGS.keys():
- if ExifTags.TAGS[orientation] == 'Orientation':
- break
-
-
- def exif_size(img):
- # Returns exif-corrected PIL size
- s = img.size # (width, height)
- try:
- rotation = dict(img._getexif().items())[orientation]
- if rotation in [6, 8]: # rotation 270
- s = (s[1], s[0])
- except:
- pass
-
- return s
-
-
- def split_rows_simple(file='../data/sm4/out.txt'): # from utils import *; split_rows_simple()
- # splits one textfile into 3 smaller ones based upon train, test, val ratios
- with open(file) as f:
- lines = f.readlines()
-
- s = Path(file).suffix
- lines = sorted(list(filter(lambda x: len(x) > 0, lines)))
- i, j, k = split_indices(lines, train=0.9, test=0.1, validate=0.0)
- for k, v in {'train': i, 'test': j, 'val': k}.items(): # key, value pairs
- if v.any():
- new_file = file.replace(s, f'_{k}{s}')
- with open(new_file, 'w') as f:
- f.writelines([lines[i] for i in v])
-
-
- def split_files(out_path, file_name, prefix_path=''): # split training data
- file_name = list(filter(lambda x: len(x) > 0, file_name))
- file_name = sorted(file_name)
- i, j, k = split_indices(file_name, train=0.9, test=0.1, validate=0.0)
- datasets = {'train': i, 'test': j, 'val': k}
- for key, item in datasets.items():
- if item.any():
- with open(f'{out_path}_{key}.txt', 'a') as file:
- for i in item:
- file.write('%s%s\n' % (prefix_path, file_name[i]))
-
-
- def split_indices(x, train=0.9, test=0.1, validate=0.0, shuffle=True): # split training data
- n = len(x)
- v = np.arange(n)
- if shuffle:
- np.random.shuffle(v)
-
- i = round(n * train) # train
- j = round(n * test) + i # test
- k = round(n * validate) + j # validate
- return v[:i], v[i:j], v[j:k] # return indices
-
-
- def make_dirs(dir='new_dir/'):
- # Create folders
- dir = Path(dir)
- if dir.exists():
- shutil.rmtree(dir) # delete dir
- for p in dir, dir / 'labels', dir / 'images':
- p.mkdir(parents=True, exist_ok=True) # make dir
- return dir
-
-
- def write_data_data(fname='data.data', nc=80):
- # write darknet *.data file
- lines = ['classes = %g\n' % nc,
- 'train =../out/data_train.txt\n',
- 'valid =../out/data_test.txt\n',
- 'names =../out/data.names\n',
- 'backup = backup/\n',
- 'eval = coco\n']
-
- with open(fname, 'a') as f:
- f.writelines(lines)
-
-
- def image_folder2file(folder='images/'): # from utils import *; image_folder2file()
- # write a txt file listing all imaged in folder
- s = glob.glob(f'{folder}*.*')
- with open(f'{folder[:-1]}.txt', 'w') as file:
- for l in s:
- file.write(l + '\n') # write image list
-
-
- def add_coco_background(path='../data/sm4/', n=1000): # from utils import *; add_coco_background()
- # add coco background to sm4 in outb.txt
- p = f'{path}background'
- if os.path.exists(p):
- shutil.rmtree(p) # delete output folder
- os.makedirs(p) # make new output folder
-
- # copy images
- for image in glob.glob('../coco/images/train2014/*.*')[:n]:
- os.system(f'cp {image} {p}')
-
- # add to outb.txt and make train, test.txt files
- f = f'{path}out.txt'
- fb = f'{path}outb.txt'
- os.system(f'cp {f} {fb}')
- with open(fb, 'a') as file:
- file.writelines(i + '\n' for i in glob.glob(f'{p}/*.*'))
- split_rows_simple(file=fb)
-
-
- def create_single_class_dataset(path='../data/sm3'): # from utils import *; create_single_class_dataset('../data/sm3/')
- # creates a single-class version of an existing dataset
- os.system(f'mkdir {path}_1cls')
-
-
- def flatten_recursive_folders(path='../../Downloads/data/sm4/'): # from utils import *; flatten_recursive_folders()
- # flattens nested folders in path/images and path/JSON into single folders
- idir, jdir = f'{path}images/', f'{path}json/'
- nidir, njdir = Path(f'{path}images_flat/'), Path(f'{path}json_flat/')
- n = 0
-
- # Create output folders
- for p in [nidir, njdir]:
- if os.path.exists(p):
- shutil.rmtree(p) # delete output folder
- os.makedirs(p) # make new output folder
-
- for parent, dirs, files in os.walk(idir):
- for f in tqdm(files, desc=parent):
- f = Path(f)
- stem, suffix = f.stem, f.suffix
- if suffix.lower()[1:] in img_formats:
- n += 1
- stem_new = '%g_' % n + stem
- image_new = nidir / (stem_new + suffix) # converts all formats to *.jpg
- json_new = njdir / f'{stem_new}.json'
-
- image = parent / f
- json = Path(parent.replace('images', 'json')) / str(f).replace(suffix, '.json')
-
- os.system("cp '%s' '%s'" % (json, json_new))
- os.system("cp '%s' '%s'" % (image, image_new))
- # cv2.imwrite(str(image_new), cv2.imread(str(image)))
-
- print('Flattening complete: %g jsons and images' % n)
-
-
- def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper)
- # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
- x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
- None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
- 51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
- None, 73, 74, 75, 76, 77, 78, 79, None]
- return x
slefjson2posetxt.py
-
-
- import json
-
- import cv2
- import pandas as pd
- from PIL import Image
- from collections import defaultdict
-
- from utils import *
-
-
-
- def convert_coco_json(cocojsonpath, savepath,use_keypoints=False, cls91to80=True):
- """Converts COCO dataset annotations to a format suitable for training YOLOv5 models.
- Args:
- labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
- use_segments (bool, optional): Whether to include segmentation masks in the output.
- use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
- cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
- Raises:
- FileNotFoundError: If the labels_dir path does not exist.
- Example Usage:
- convert_coco(labels_dir='../coco/annotations/', use_segments=True, use_keypoints=True, cls91to80=True)
- Output:
- Generates output files in the specified output directory.
- """
- # save_dir = make_dirs('yolo_labels') # output directory
- save_dir = make_dirs(savepath) # output directory
- coco80 = coco91_to_coco80_class()
-
- # Import json
- for json_file in sorted(Path(cocojsonpath).resolve().glob('*.json')):
- fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name
- fn.mkdir(parents=True, exist_ok=True)
- with open(json_file) as f:
- data = json.load(f)
-
- # Create image dict
- images = {f'{x["id"]:d}': x for x in data['images']}
- # Create image-annotations dict
- imgToAnns = defaultdict(list)
- for ann in data['annotations']:
- imgToAnns[ann['image_id']].append(ann)
-
- # Write labels file
- for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'):
- img = images[f'{img_id:d}']
- h, w, f = img['height'], img['width'], img['file_name']
-
- bboxes = []
- segments = []
- keypoints = []
- for ann in anns:
- if ann['iscrowd']:
- continue
- # The COCO box format is [top left x, top left y, width, height]
- box = np.array(ann['bbox'], dtype=np.float64)
- box[:2] += box[2:] / 2 # xy top-left corner to center
- box[[0, 2]] /= w # normalize x
- box[[1, 3]] /= h # normalize y
- if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
- continue
-
- cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class
- box = [cls] + box.tolist()
- if box not in bboxes:
- bboxes.append(box)
- if use_keypoints and ann.get('keypoints') is not None:
- k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
- k = box + k
- keypoints.append(k)
-
- # Write
- fname = f.split('/')[-1]
- # with open((fn / f).with_suffix('.txt'), 'a') as file:
- with open((fn / fname).with_suffix('.txt'), 'a') as file:
- for i in range(len(bboxes)):
- if use_keypoints:
- line = *(keypoints[i]), # cls, box, keypoints
- file.write(('%g ' * len(line)).rstrip() % line + '\n')
- if __name__ == '__main__':
- source = 'COCO'
- cocojsonpath = r'G:\XRW\Data\mycoco\annotations'
- savepath = r'G:\XRW\Data\myposedata'
- if source == 'COCO':
- convert_coco_json(cocojsonpath, # directory with *.json
- savepath,
- use_keypoints=True,
- cls91to80=True)
运行代码得到:
<class-index>
是对象的类的索引,<x> <y> <width> <height>
是边界框的坐标,<px1> <py1> <px2> <py2> ... <pxn> <pyn>
是关键点的像素坐标。坐标由空格分隔。
PoseVisualization.py:将txt的信息可视化在图片上进行验证。
-
-
- import cv2
- imgpath = r'G:\XRW\Data\selfjson\five_22101205_000930.jpg'
- txtpath = r'G:\XRW\Data\myposedata\labels\selfjson\five_22101205_000930.txt'
-
- f = open(txtpath,'r')
- lines = f.readlines()
- img = cv2.imread(imgpath)
- h, w, c = img.shape
- colors = [[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
- [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
- [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
- [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]]
- for line in lines:
- print(line)
- l = line.split(' ')
- print(len(l))
- cx = float(l[1]) * w
- cy = float(l[2]) * h
- weight = float(l[3]) * w
- height = float(l[4]) * h
- xmin = cx - weight/2
- ymin = cy - height/2
- xmax = cx + weight/2
- ymax = cy + height/2
- print((xmin,ymin),(xmax,ymax))
- cv2.rectangle(img,(int(xmin),int(ymin)),(int(xmax),int(ymax)),(0,255,0),2)
- kpts = []
-
- for i in range(17):
- x = float(l[5:][3*i]) * w
- y = float(l[5:][3*i+1]) * h
- s = int(l[5:][3*i+2])
- print(x,y,s)
- if s != 0:
- cv2.circle(img,(int(x),int(y)),1,colors[i],2)
- kpts.append([int(x),int(y),int(s)])
- print(kpts)
- kpt_line = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
- [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
- for j in range(len(kpt_line)):
- m,n = kpt_line[j][0],kpt_line[j][1]
- if kpts[m-1][2] !=0 and kpts[n-1][2] !=0:
- cv2.line(img,(kpts[m-1][0],kpts[m-1][1]),(kpts[n-1][0],kpts[n-1][1]),colors[j],2)
-
- img = cv2.resize(img, None, fx=0.5, fy=0.5)
- cv2.imshow('1',img)
- cv2.waitKey(0)
这样就将自己的Json格式转成训练Yolov8-Pose姿态的txt格式了。
以上步骤完成后只生成了txt,需要再将对应的图片copy到对应路径中。
pickImg.py
-
- import glob
- import os
- import shutil
- imgpath = r'G:\XRW\Data\selfjson'
- txtpath = r'G:\XRW\Data\myposedata\labels\selfjson'
- savepath = r'G:\XRW\Data\myposedata\images\selfjson'
- os.makedirs(savepath,exist_ok=True)
-
- imglist = glob.glob(os.path.join(imgpath ,'*.jpg'))
- # print(imglist)
- txtlist = glob.glob(os.path.join(txtpath ,'*.txt'))
- # print(txtlist)
- for img in imglist:
- name = txtpath + '\\' +img.split('\\')[-1].split('.')[0 ] +'.txt'
- print(name)
- if name in txtlist:
- shutil.copy(img ,savepath)
这样就将自己标注的数据集转换成Yolov8-Pose格式的txt了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。