赞
踩
方法一
from transformers import AutoTokenizer
tokenizer=AutoTokenizer.from_pretrained("./distilbert-base-uncased-finetuned-sst-2-english")
x_train_tokenized=x_train[0].apply(lambda ii:tokenizer.encode(ii, add_special_tokens = True))
# 填充方法
max_len=0
for i in x_train_tokenized.values:
if len(i) > max_len:
max_len = len(i)
x_train_tokenized = np.array([i + [0] * (max_len - len(i)) for i in x_train_tokenized.values])
方法二
from transformers import AutoTokenizer tokenizer=AutoTokenizer.from_pretrained("./distilbert-base-uncased-finetuned-sst-2-english") x_train_tokenized=x_train[0].apply(lambda ii:tokenizer(ii, padding="max_length", truncation=True, return_tensors="pt", max_length=66)) 输出类似 tensor([[ 101, 5342, 2047, 3595, 8496, 2013, 1996, 18643, 3197, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。