当前位置:   article > 正文

arm/arm64函数栈帧(stackframe)结构和传参规则_dump_backtrace

dump_backtrace

1. 概述和问题

本文汇编代码的平台及编译器:arm/gcc。分析函数调用栈的规则对于理解程序运行基本原理很有帮助,汇编代码分析crash问题也大有裨益。本文示例代码通过C语言函数调用一个汇编函数,再从汇编函数跳转回C函数,分析该示例的汇编代码就可以stack frame的创建和arm函数调用的传参规则。

问题:

  • arm32使用哪些寄存器传参,如果参数超过4个怎么传参?
  • arm32/gcc中函数调用stack frame的创建,以及函数返回stack frame的销毁过程是怎样的?

2.arm32函数传参规则和stack frame基本结构

2.1 传参规则

  • r0-r3传递第1-第4个参数;如果超过4个参数使用栈传递参数,且当前函数栈顶(sp指向的地址)放置第5个参数,sp+4处放置第6个参数。
  • r0存放返回值

2.2 stack frame基本机构

3.示例代码

示例代码包括两个源文件:transferParam.c和transferParam.S

transferParam.c:

  1. #include <stdlib.h>
  2. #include <stdio.h>
  3. #include <string.h>
  4. extern void bionic_clone(int flags, int* child_stack, int* parent_tid, int* tls, int* child_tid, int (*fn)(void*), int* arg);
  5. int child(void* v) {
  6. return 0;
  7. }
  8. void my_fork(int flags, int *child_stack, int *ptid, int *tls, int *child_tid, int *child, int *args) {
  9. printf("flags:%d sp:%p ptid:%p tls:%p child_tid:%p child:%p args:%d\n",
  10. flags, child_stack, ptid, tls, child_tid, child, *args);
  11. }
  12. int main(){
  13. int flags = 0;
  14. int *childStack = (int*)0x01;
  15. int *parent_tid = (int*)0x02;
  16. int *tls = (int*)0x03;
  17. int *child_tid = (int*)0x04;
  18. int arg = 5;
  19. printf("%s\n", "before bionic_clone");
  20. bionic_clone(flags, childStack, parent_tid, tls, child_tid, child, &arg);
  21. printf("%s\n", "after bionic_clone");
  22. return 0;
  23. }

c代码中调用了汇编函数bionic_clone,且参数超过4个,需要使用栈传递参数。

transferParam.S:

  1. .globl bionic_clone
  2. bionic_clone:
  3. push {fp, lr} @fp, lr入栈
  4. add fp, sp, #4 @fp = sp - 4
  5. @stmfd sp!, {r4, r5, r6}
  6. ldr r4, [fp, #4] @读取第五个参数到r4寄存器
  7. ldr r5, [fp, #8] @读取第六个参数到r5寄存器
  8. ldr r6, [fp, #12] @读取第7个参数到r6寄存器
  9. stmfd sp!, {r4, r5, r6} @r4, r5, r6入栈,以此给my_fork函数传参
  10. bl my_fork
  11. sub sp, fp, #4 @sp = fp - 4
  12. pop {fp, pc} @恢复fp, lr到fp和pc寄存器,实现函数返回
  13. .type bionic_clone,%function

代码执行到ldr r6, [fp, #12] stack frame图示:

 正如main函数通过栈给bionic_clone函数传递第5,6,7三个参数,bionic_clone也将r4 r5 r6入栈给my_fork传递参数

4. arm64栈帧结构

  1. void bar(int a , int b ) {
  2. printf("bar\n");
  3. a = a + b;
  4. printf("%d\n",a);
  5. }
  6. void foo() {
  7. int a = 0;
  8. int b = 1;
  9. bar(a, b);
  10. }
  11. int main(int argc, char *argv[]) {
  12. foo();
  13. }
  14. ~

反汇编代码:

  1. 000000000040072c <bar>:
  2. 40072c: a9be7bfd stp x29, x30, [sp,#-32]!
  3. 400730: 910003fd mov x29, sp
  4. 400734: b9001fa0 str w0, [x29,#28]
  5. 400738: b9001ba1 str w1, [x29,#24]
  6. 40073c: 90000000 adrp x0, 400000 <_init-0x598>
  7. 400740: 91216000 add x0, x0, #0x858
  8. 400744: 97ffffaf bl 400600 <puts@plt>
  9. 400748: b9401fa1 ldr w1, [x29,#28]
  10. 40074c: b9401ba0 ldr w0, [x29,#24]
  11. 400750: 0b000020 add w0, w1, w0
  12. 400754: b9001fa0 str w0, [x29,#28]
  13. 400758: 90000000 adrp x0, 400000 <_init-0x598>
  14. 40075c: 91218000 add x0, x0, #0x860
  15. 400760: b9401fa1 ldr w1, [x29,#28]
  16. 400764: 97ffffab bl 400610 <printf@plt>
  17. 400768: d503201f nop
  18. 40076c: a8c27bfd ldp x29, x30, [sp],#32
  19. 400770: d65f03c0 ret
  20. 0000000000400774 <foo>:
  21. 400774: a9be7bfd stp x29, x30, [sp,#-32]!
  22. 400778: 910003fd mov x29, sp
  23. 40077c: b9001fbf str wzr, [x29,#28]
  24. 400780: 52800020 mov w0, #0x1 // #1
  25. 400784: b9001ba0 str w0, [x29,#24]
  26. 400788: b9401ba1 ldr w1, [x29,#24]
  27. 40078c: b9401fa0 ldr w0, [x29,#28]
  28. 400790: 97ffffe7 bl 40072c <bar>
  29. 400794: d503201f nop
  30. 400798: a8c27bfd ldp x29, x30, [sp],#32
  31. 40079c: d65f03c0 ret
  32. 00000000004007a0 <main>:
  33. 4007a0: a9be7bfd stp x29, x30, [sp,#-32]!
  34. 4007a4: 910003fd mov x29, sp
  35. 4007a8: b9001fa0 str w0, [x29,#28]
  36. 4007ac: f9000ba1 str x1, [x29,#16]
  37. 4007b0: 97fffff1 bl 400774 <foo>
  38. 4007b4: 52800000 mov w0, #0x0 // #0
  39. 4007b8: a8c27bfd ldp x29, x30, [sp],#32
  40. 4007bc: d65f03c0 ret

arm64栈帧结构:

 5. 实战,内核如何dump bactrace

为了加深stack frame的理解,可以分析arm64如何dump bactrace。内核配置CONFIG_FRAME_POINTER可以基于fp栈回溯。基本原理可以看栈帧结构中,比如arm64小节示例代码中,main调用foo,foo调用bar,我们从bar开始回溯栈帧,如果我们先得到bar的x29值,那么从x29 + 8处保存了x30,即为caller调用者的地址,bar x29又可以回溯到foo函数的栈帧结构,依次类推就可以回溯整个函数调用。

kernel-4.14/arch/arm64/kernel/traps.c:

  1. void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
  2. {
  3. struct stackframe frame;
  4. int skip;
  5. pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
  6. if (!tsk)
  7. tsk = current;
  8. if (!try_get_task_stack(tsk))
  9. return;
  10. //假设是dump当前task的backtrace
  11. if (tsk == current) {
  12. //__builtin_frame_address是编译内置函数,返回当前栈栈帧地址即x29.
  13. frame.fp = (unsigned long)__builtin_frame_address(0);
  14. frame.pc = (unsigned long)dump_backtrace;
  15. } else {
  16. /*
  17. * task blocked in __switch_to
  18. */
  19. frame.fp = thread_saved_fp(tsk);
  20. frame.pc = thread_saved_pc(tsk);
  21. }
  22. skip = !!regs;
  23. printk("Call trace:\n");
  24. while (1) {
  25. unsigned long stack;
  26. int ret;
  27. //dump_backtrace_entry打印frame.pc的值
  28. /* skip until specified stack frame */
  29. if (!skip) {
  30. dump_backtrace_entry(frame.pc);
  31. } else if (frame.fp == regs->regs[29]) {
  32. skip = 0;
  33. /*
  34. * Mostly, this is the case where this function is
  35. * called in panic/abort. As exception handler's
  36. * stack frame does not contain the corresponding pc
  37. * at which an exception has taken place, use regs->pc
  38. * instead.
  39. */
  40. dump_backtrace_entry(regs->pc);
  41. }
  42. ret = unwind_frame(tsk, &frame);
  43. if (ret < 0)
  44. break;
  45. if (in_entry_text(frame.pc)) {
  46. stack = frame.fp - offsetof(struct pt_regs, stackframe);
  47. if (on_accessible_stack(tsk, stack))
  48. dump_mem("", "Exception stack", stack,
  49. stack + sizeof(struct pt_regs));
  50. }
  51. }
  52. put_task_stack(tsk);
  53. }
  54. /*
  55. * AArch64 PCS assigns the frame pointer to x29.
  56. *
  57. * A simple function prologue looks like this:
  58. * sub sp, sp, #0x10
  59. * stp x29, x30, [sp]
  60. * mov x29, sp
  61. *
  62. * A simple function epilogue looks like this:
  63. * mov sp, x29
  64. * ldp x29, x30, [sp]
  65. * add sp, sp, #0x10
  66. */
  67. int notrace unwind_frame(struct task_struct *tsk, struct stackframe *frame)
  68. {
  69. unsigned long fp = frame->fp;
  70. if (fp & 0xf)
  71. return -EINVAL;
  72. if (!tsk)
  73. tsk = current;
  74. if (!on_accessible_stack(tsk, fp))
  75. return -EINVAL;
  76. //获取上一级(caller)的fp值,具体可以看arm64栈帧结构
  77. frame->fp = READ_ONCE_NOCHECK(*(unsigned long *)(fp));
  78. //fp+8存储的是caller调用之的地址(即返回地址),具体可以对着arm64栈帧结构看
  79. frame->pc = READ_ONCE_NOCHECK(*(unsigned long *)(fp + 8));
  80. /*
  81. * Frames created upon entry from EL0 have NULL FP and PC values, so
  82. * don't bother reporting these. Frames created by __noreturn functions
  83. * might have a valid FP even if PC is bogus, so only terminate where
  84. * both are NULL.
  85. */
  86. if (!frame->fp && !frame->pc)
  87. return -EINVAL;
  88. return 0;
  89. }

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/531598
推荐阅读
  

闽ICP备14008679号