当前位置:   article > 正文

LSTM进行情感分析

LSTM进行情感分析

LSTM进行情感分析的复现–pytorch的实现

关于TextCNN的复现参考本文章

TextCNN的复现–pytorch实现 - 知乎 (zhihu.com)

接下来主要是对代码内容的详解,完整代码将在文章末尾给出。

使用的数据集为电影评论数据集,其中正面数据集5000条左右,负面的数据集也为5000条。

pyroch的基本训练过程:

加载训练集–构建模型–模型训练–模型评价

首先,是要对数据集进行加载,在对数据集加载时候需要继承一下Dataset类,代码如下

import re
from collections import Counter
from collections import OrderedDict

import gensim
import torch.nn
from sympy.parsing.sympy_parser import _flatten
from torch.utils.data import Dataset
import numpy as np
import pandas as pd
from torchtext.vocab import vocab


class Data_loader(Dataset):
    def __init__(self, file_pos, file_neg, model_path, word2_vec=False):
        self.file_pos = file_pos
        self.file_neg = file_neg
        if word2_vec:
            self.x_train, self.y_train = self.get_word2vec(model_path)
        else:
            self.x_train, self.y_train, self.dictionary = self.pre_process()

    def __getitem__(self, idx):
        data = self.x_train[idx]
        label = self.y_train[idx]
        data = torch.tensor(data)
        label = torch.tensor(label)
        return data, label

    def __len__(self):
        return len(self.x_train)

    def clean_sentences(self, string):
        string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
        string = re.sub(r"\'s", " \'s", string)
        string = re.sub(r"\'ve", " \'ve", string)
        string = re.sub(r"n\'t", " n\'t", string)
        string = re.sub(r"\'re", " \'re", string)
        string = re.sub(r"\'d", " \'d", string)
        string = re.sub(r"\'ll", " \'ll", string)
        string = re.sub(r",", " , ", string)
        string = re.sub(r"!", " ! ", string)
        string = re.sub(r"\(", " \( ", string)
        string = re.sub(r"\)", " \) ", string)
        string = re.sub(r"\?", " \? ", string)
        string = re.sub(r"\s{2,}", " ", string)
        return string.strip().lower()

    def load_data_and_labels(self):
        positive_examples = list(open(self.file_pos, "r", encoding="utf-8").readlines())
        positive_examples = [s.strip() for s in positive_examples]  # 对评论数据删除每一行数据的\t,\n
        negative_examples = list(open(self.file_neg, "r", encoding="utf-8").readlines())
        negative_examples = [s.strip() for s in negative_examples]  # 对评论数据删除每一行数据的\t,\n
        x_text = positive_examples + negative_examples
        x_text = [self.clean_sentences(_) for _ in x_text]
        positive_labels = [1 for _ in positive_examples]  # 正样本数据为1

        negative_labels = [0 for _ in negative_examples]  # 负样本数据为0
        y = np.concatenate((positive_labels, negative_labels), axis=0)
        return x_text, y.T  # 返回的是dataframe对象,[0]data[0]为文本数据,data[1]为标签

    def pre_process(self):
        '''
        加载数据,并对之前使用的数据进行打乱返回,同时根据训练集和测试集的比列进行划分,默认百分80和百分20
        :return:测试数据、训练数据、以及生成的词汇表
        '''
        x_data, y_label = self.load_data_and_labels()

        max_document_length = max(len(x.split(' ')) for x in x_data)
        voc = []
        word_split = []
        [voc.extend(x.split()) for x in x_data]  # 生成词典
        [word_split.append(x.split()) for x in x_data]
        if len(voc) != 0:
            ordere_dict = OrderedDict(sorted(Counter(_flatten(voc)).items(), key=lambda x: x[1], reverse=True))
            # 把文档映射成词汇的索引序列
            dictionary = vocab(ordere_dict)
            x_data = []
            for words in word_split:
                x = list(dictionary.lookup_indices(words))
                temp_pos = max_document_length - len(x)
                if temp_pos != 0:
                    for i in range(1, temp_pos + 1):
                        x.extend([0])
                x_data.append(x)
            x_data = np.array(x_data)
            np.random.seed(10)
            # 将标签打乱顺序,返回索引
            shuffle_indices = np.random.permutation(np.arange(len(y_label)))

            x_shuffled = x_data[shuffle_indices]
            y_shuffled = y_label[shuffle_indices]
            return x_shuffled, y_shuffled, dictionary

    def get_word2vec(self, model_path):
        model = gensim.models.Word2Vec.load(model_path)
        x_data, y_label = self.load_data_and_labels()
        word_split = []
        [word_split.append(x.split()) for x in x_data]
        sentence_vectors = []
        for sentence in word_split:
            sentence_vector = []
            for word in sentence:
                try:
                    v = model.wv.get_index(word)
                except Exception as e:
                    v = np.random.randint(0, 71289)
                sentence_vector.append(int(v))
            sentence_vectors.append(sentence_vector)   # 获取到句子单词在词表中的位置
        max_document_length = max(len(x) for x in sentence_vectors)
        for vector in sentence_vectors:
            for i in range(1, max_document_length - len(vector) + 1):
                vector.append(int(71289))
        vector_data = np.asarray(sentence_vectors)
        # vector_data = sentence_vectors
        np.random.seed(10)
        # 将标签打乱顺序,返回索引
        shuffle_indices = np.random.permutation(np.arange(len(y_label)))

        x_shuffled = vector_data[shuffle_indices]
        y_shuffled = y_label[shuffle_indices]
        return x_shuffled, y_shuffled
        # return vector_data, y_label
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123

上述代码中的__init__ 、getitem 、len是必须要继承实现的方法,clean_sentence是对读取的数据进行清洗,load_data_and_label是加载数据且返回清洗过后的数据以及数据标签。pre_process是对数据进行编码,原始的数据是英文数据,因此需要对其进行分词、编码,最后返回的数据将是数字,一行数据就是一句评论。

例如:

I like this movie

在对其进行编码返回后将是 0 1 2 3,0对应的为I,1对应的为like以此类推。

在这儿设置的每个词的维度是256维。

接下来就是LSTM模型的构建

class LSTM_RNN(nn.Module):
    def __init__(self, num_embeddings=-1, drop_rate=0.8, embedding_dim=256, hidden_size=64, output_size=1, num_layers=2):
        super().__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.num_embeddings = num_embeddings  # num_embeddings为单词的维度
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_size, num_layers, bidirectional=True, batch_first=True)
        self.compute = nn.Linear(hidden_size, output_size)
        self.drop = nn.Dropout(drop_rate)
        self.sigmod = nn.Sigmoid()

    def forward(self, x, hidden):
        """
        x: 本次的输入,其size为(batch_size, 200),200为句子长度
        hidden: 上一时刻的Hidden State和Cell State。类型为tuple: (h, c),
        其中h和c的size都为(n_layers, batch_size, hidden_dim), 即(2, 200, 512)
        """
        if self.num_embeddings > 0:
            x = self.embedding(x)

        batch_size = x.size(0)
        x, hidden = self.lstm(x, hidden)  # _x is input, size (seq_len, batch, input_size)
        # s, b, h = x.shape  # x is output, size (seq_len, batch, hidden_size)
        x = x.contiguous().view(-1, self.hidden_size)
        x = self.drop(x)
        x = self.compute(x)
        # x = x.view(s, b, -1)
        predict = self.sigmod(x)
        predict = predict.view(batch_size, -1)
        out = predict[:, -1]  # 取得是最后一个单词的概率
        return out, hidden

    def init_hidden(self, batch_size):
        """
        初始化隐状态:第一次送给LSTM时,没有隐状态,所以要初始化一个
        这里的初始化策略是全部赋0。
        这里之所以是tuple,是因为LSTM需要接受两个隐状态hidden state和cell state
        """
        hidden = (torch.zeros(self.num_layers*2, batch_size, self.hidden_size).to('cpu'),
                  torch.zeros(self.num_layers*2, batch_size, self.hidden_size).to('cpu')
                  )
        return hidden
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

在构建模型时候需要继承nn.moudule,同时要实现__init__、以及forward方法,可以看作init在定义各个层,forward在对各个层之间来进行连接。

接下来就是对模型进行训练,代码如下所示:

import torch
from torch import nn
from torch.utils.data import DataLoader
import torch.nn

from LSTM import LSTM_RNN
from TextCNN import TextCNN
from dataLoader import Data_loader

batch_size = 830
# num_classes = 2
file_pos = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn/data/rt-polarity.pos'
file_neg = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn/data/rt-polarity.neg'
word2vec_path = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn/word2vec1.model'
train_data = Data_loader(file_pos, file_neg, word2vec_path)
train_size = int(len(train_data) * 0.8)
test_size = len(train_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(train_data, [train_size, test_size])
train_iter = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

test_iter = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# model = TextCNN(num_classes, embeddings_pretrained=True)
model = LSTM_RNN(num_embeddings=18764)
# 开始训练
epoch = 100  # 训练轮次
optmizer = torch.optim.Adam(model.parameters(), lr=0.001)
# optmizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.04)
train_losses = []
train_counter = []
test_losses = []
log_interval = 5
test_counter = [i * len(train_iter.dataset) for i in range(epoch + 1)]
device = 'cpu'


def train_loop(n_epochs, optimizer, model, train_loader, device, test_iter):
    for epoch in range(1, n_epochs + 1):
        print("开始第{}轮训练".format(epoch))
        model.train()
        correct = 0
        for i, data in enumerate(train_loader):
            # print(i)
            optimizer.zero_grad()
            (text_data, label) = data
            text_data = text_data.to(device)
            label = label.to(device)
            label = label.long()
            # print(len(text_data))
            h = model.init_hidden(len(text_data))  # 初始化第一个Hidden_state
            output, h = model(text_data, h)
            # print(torch.mean(output))
            loss_func = nn.BCELoss()
            # output = output.long()
            loss = loss_func(output, label.float())
            loss.backward()
            optimizer.step()
            pred = [1 if x >= 0.5 else 0 for x in output]  # 返回的是列表
            for index in range(0, len(pred)):
                if pred[index] == label[index]:
                    correct += 1
            if i % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, i * len(text_data), len(train_loader.dataset),
                           100. * i / len(train_loader), loss.item()))
                train_losses.append(loss.item())
                train_counter.append(
                    (i * 64) + ((epoch - 1) * len(train_loader.dataset)))
                torch.save(model.state_dict(), './model.pth')
                torch.save(optimizer.state_dict(), './optimizer.pth')
        # if 100. * correct / len(train_loader.dataset)<94:
        print("Accuracy: {}/{} ({:.0f}%)\n".format(correct, len(train_loader.dataset),
                                               100. * correct / len(train_loader.dataset)))
        test_loop(model, device, test_iter)
        # else:
        #     break
            # model.eval()
    # PATH = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn\\LSTM/model.pth'
    # dictionary = torch.load(PATH)
    # model.load_state_dict(dictionary)




def test_loop(model, device, test_iter):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_iter:
            data = data.to(device)
            target = target.to(device)
            h = model.init_hidden(len(data))  # 初始化第一个Hidden_state
            output, h = model(data, h)
            loss_func = nn.BCEWithLogitsLoss()
            loss = loss_func(output, target.float())
            test_loss += loss
            pred = [1 if x >= 0.5 else 0 for x in output]  # 返回的是列表
            for index in range(0, len(pred)):
                if pred[index] == target[index]:
                    correct += 1
    test_loss /= len(test_iter.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_iter.dataset),
        100. * correct / len(test_iter.dataset)))




train_loop(epoch, optmizer, model, train_iter, device, test_iter)

PATH = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn\\LSTM/model.pth'
model = LSTM_RNN(num_embeddings=18764)
dictionary = torch.load(PATH)
model.load_state_dict(dictionary)
test_loop(model, device, test_iter)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117

在上述中,首先会对数据集加载进来,然后分为80%的训练集和20%的测试集,定义使用的优化器为adam。同时在训练的过程中会对优化器、损失函数等信息进行保存。

训练结果如下所示:

image-20240102115319568

完整代码链接,后续会使用其他数据来对模型进行测试。

/model.pth’
model = LSTM_RNN(num_embeddings=18764)
dictionary = torch.load(PATH)
model.load_state_dict(dictionary)
test_loop(model, device, test_iter)


在上述中,首先会对数据集加载进来,然后分为80%的训练集和20%的测试集,定义使用的优化器为adam。同时在训练的过程中会对优化器、损失函数等信息进行保存。

训练结果如下所示:

[外链图片转存中...(img-KOExQS59-1706516526357)]

完整代码链接,后续会使用其他数据来对模型进行测试。

[木南/TextCNN (gitee.com)](https://gitee.com/nanwang-crea/text-cnn)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/555626
推荐阅读
相关标签
  

闽ICP备14008679号