赞
踩
决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
决策树:
- 是一种树形结构,本质是一颗由多个判断节点组成的树
- 其中每个内部节点表示一个属性上的判断,
- 每个分支代表一个判断结果的输出,
- 最后每个叶节点代表一种分类结果。
怎么理解这句话?通过一个对话例子
想一想这个女生为什么把年龄放在最上面判断!!!!!!!!!
上面案例是女生通过定性的主观意识,把年龄放到最上面,那么如果需要对这一过程进行量化,该如何处理呢?
此时需要用到信息论中的知识:信息熵,信息增益
物理学上,熵 Entropy 是“混乱”程度的量度。
系统越有序,熵值越低;系统越混乱或者分散,熵值越高。
1948年香农提出了信息熵(Entropy) 的概念。
信息理论:
- 从信息的完整性上进行的描述:
当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。
2.从信息的有序性上进行的描述:
当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。
“信息熵” (information entropy)是度量样本集合纯度最常用的一种指标。
假定当前样本集合 D 中第 k k k 类样本所占的比例为 p k ( k = 1 , 2 , . . . , ∣ y ∣ ) p_k(k = 1, 2,. . . , |y|) pk(k=1,2,...,∣y∣)
p k = C k D p_k = \frac{C^k}{D} pk=DCk , D D D为样本的所有数量, C k C^k Ck为第 k k k类样本的数量。
则
D
D
D的信息熵定义为(log是以2为底,lg是以10为底):
其中:
E
n
t
(
D
)
Ent(D)
Ent(D) 的值越小,则
D
D
D 的纯度越高
课堂案例:
假设我们没有看世界杯的比赛,但是想知道哪支球队会是冠军,
我们只能猜测某支球队是或不是冠军,然后观众用对或不对来回答,
我们想要猜测次数尽可能少,你会用什么方法?
答案:
二分法:
假如有 16 支球队,分别编号,先问是否在 1-8 之间,如果是就继续问是否在 1-4 之间,
以此类推,直到最后判断出冠军球队是哪支。
如果球队数量是 16,我们需要问 4 次来得到最后的答案。那么世界冠军这条消息的信息熵就是 4。
那么信息熵等于4,是如何进行计算的呢?
Ent(D) = -(p1 * logp1 + p2 * logp2 + ... + p16 * logp16),
其中 p1, ..., p16 分别是这 16 支球队夺冠的概率。
当每支球队夺冠概率相等都是 1/16 的时:Ent(D) = -(16 * 1/16 * log1/16) = 4
每个事件概率相同时,熵最大,这件事越不确定。
练习:
篮球比赛里,有4个球队 {A,B,C,D} ,获胜概率分别为{1/2, 1/4, 1/8, 1/8}
求Ent(D)
答案:
信息增益: 以某特征划分数据集前后的熵的差值。熵可以表示样本集合的不确定性,熵越大,样本的不确定性就越大。因此可以使用划分前后集合熵的差值来衡量使用当前特征对于样本集合D划分效果的好坏。
信息增益 = entroy(前) - entroy(后)
注:信息增益表示得知特征X的信息而使得类Y的信息熵减少的程度
定义与公式:
假定离散属性a有 V 个可能的取值:
假设离散属性性别有2(男,女)个可能的取值
若使用a来对样本集 D 进行划分,则会产生 V 个分支结点,
其中第v个分支结点包含了 D 中所有在属性a上取值为 a v a^v av的样本,记为 D v D^v Dv,我们可根据前面给出的信息熵公式计算出 D v D^v Dv的信息熵,再考虑到不同的分支结点所包含的样本数不同,给分支结点赋予权重 ∣ D v ∣ ∣ D ∣ \frac{|D^v|}{|D|} ∣D∣∣Dv∣
即样本数越多的分支结点的影响越大,于是可计算出用属性a对样本集 D 进行划分所获得的"信息增益" (information gain)
其中:
特征a对训练数据集D的信息增益Gain(D,a),定义为集合D的信息熵
E
n
t
(
D
)
Ent(D)
Ent(D)与给定特征a条件下D的信息条件熵
E
n
t
(
D
∣
a
)
E
n
t
(
D
∣
a
)
Ent(D|a)Ent(D∣a)
Ent(D∣a)Ent(D∣a)之差,即公式为:
信息熵的计算:
条件熵的计算:
其中:
D v D^v Dv表示a属性中第v个分支节点包含的样本数
C k v C^{kv} Ckv表示a属性中第v个分支节点包含的样本数中,第 k k k个类别下包含的样本数
一般而言,信息增益越大,则意味着使用属性 a 来进行划分所获得的"纯度提升"越大。 因此,我们可用信息增益来进行决策树的划分属性选择,著名的 ID3 决策树学习算法 [Quinlan,1986] 就是以信息增益为准则来选择划分属性。
其中,ID3 名字中的 ID 是 Iterative Dichotomiser (迭代二分器)的简称
如下图,第一列为论坛号码,第二列为性别,第三列为活跃度,最后一列用户是否流失。
我们要解决一个问题:性别和活跃度两个特征,哪个对用户流失影响更大?
通过计算信息增益可以解决这个问题,统计上右表信息
其中Positive为正样本(已流失),Negative为负样本(未流失),下面的数值为不同划分下对应的人数。
可得到三个熵:
a.计算类别信息熵
整体熵:
b.计算性别属性的信息熵(a=“性别”)
c.计算性别的信息增益(a=“性别”)
b.计算活跃度属性的信息熵(a=“活跃度”)
c.计算活跃度的信息增益(a=“活跃度”)
活跃度的信息增益比性别的信息增益大,也就是说,活跃度对用户流失的影响比性别大。 在做特征选择或者数据分析的时候,我们应该重点考察活跃度这个指标。
在上面的介绍中,我们有意忽略了"编号"这一列.若把"编号"也作为一个候选划分属性,则根据信息增益公式可计算出它的信息增益为 0.9182,远大于其他候选划分属性。
计算每个属性的信息熵过程中,我们发现,该属性的值为0, 也就是其信息增益为0.9182. 但是很明显这么分类,最后出现的结果不具有泛化效果.无法对新样本进行有效预测.
实际上,信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法 [Quinlan,1993] 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分属性
增益率: 增益率是用前面的信息增益Gain(D, a)和属性a对应的"固有值"(intrinsic value) [Quinlan,1993]的比值来共同定义的。
其中:
属性 a 的可能取值数目越多(即 V 越大),则 IV(a) 的值通常会越大.
a.计算类别信息熵
b.计算类别属性的信息熵(性别、活跃度)
c.计算活跃度的信息增益(性别、活跃度)
d.计算属性分裂信息度量
用分裂信息度量来考虑某种属性进行分裂时分支的数量信息和尺寸信息,我们把这些信息称为属性的内在信息(instrisic information)。信息增益率用信息增益/内在信息,会导致属性的重要性随着内在信息的增大而减小(也就是说,如果这个属性本身不确定性就很大,那我就越不倾向于选取它),这样算是对单纯用信息增益有所补偿。
e.计算信息增益率
活跃度的信息增益率更高一些,所以在构建决策树的时候,优先选择
通过这种方式,在选取节点的过程中,我们可以降低取值较多的属性的选取偏好。
如下图,第一列为天气,第二列为温度,第三列为湿度,第四列为风速,最后一列该活动是否进行。
我们要解决:根据下面表格数据,判断在对应天气下,活动是否会进行?
该数据集有四个属性,属性集合A={ 天气,温度,湿度,风速}, 类别标签有两个,类别集合L={进行,取消}
a.计算类别信息熵
类别信息熵表示的是所有样本中各种类别出现的不确定性之和。根据熵的概念,熵越大,不确定性就越大,把事情搞清楚所需要的信息量就越多。
E
n
t
(
D
)
=
−
9
14
l
o
g
2
9
14
−
5
14
l
o
g
2
5
14
=
0.940
Ent(D)=-\frac{9}{14}log_2\frac{9}{14}-\frac{5}{14}log_2\frac{5}{14}=0.940
Ent(D)=−149log2149−145log2145=0.940
b.计算每个属性的信息熵
每个属性的信息熵相当于一种条件熵。他表示的是在某种属性的条件下,各种类别出现的不确定性之和。属性的信息熵越大,表示这个属性中拥有的样本类别越不“纯”。
c.计算信息增益
信息增益 = 熵 - 条件熵,在这里就是 类别信息熵 - 属性信息熵,它表示的是信息不确定性减少的程度。如果一个属性的信息增益越大,就表示用这个属性进行样本划分可以更好的减少划分后样本的不确定性,当然,选择该属性就可以更快更好地完成我们的分类目标。
信息增益就是ID3算法的特征选择指标。
假设我们把上面表格1的数据前面添加一列为"编号",取值(1–14). 若把"编号"也作为一个候选划分属性,则根据前面步骤: 计算每个属性的信息熵过程中,我们发现,该属性的值为0, 也就是其信息增益为0.940. 但是很明显这么分类,最后出现的结果不具有泛化效果.此时根据信息增益就无法选择出有效分类特征。所以,C4.5选择使用信息增益率对ID3进行改进。
d.计算属性分裂信息度量
用分裂信息度量来考虑某种属性进行分裂时分支的数量信息和尺寸信息,我们把这些信息称为属性的内在信息(instrisic information)。信息增益率用信息增益/内在信息,会导致属性的重要性随着内在信息的增大而减小(也就是说,如果这个属性本身不确定性就很大,那我就越不倾向于选取它),这样算是对单纯用信息增益有所补偿。
e.计算信息增益率
天气的信息增益率最高,选择天气为分裂属性。发现分裂了之后,天气是“阴”的条件下,类别是”纯“的,所以把它定义为叶子节点,选择不“纯”的结点继续分裂。
在子结点当中重复过程1~5,直到所有的叶子结点足够"纯"。
现在我们来总结一下C4.5的算法流程
while(当前节点"不纯"):
1.计算当前节点的类别熵(以类别取值计算)
2.计算当前阶段的属性熵(按照属性取值吓得类别取值计算)
3.计算信息增益
4.计算各个属性的分裂信息度量
5.计算各个属性的信息增益率
end while
当前阶段设置为叶子节点
1.用信息增益率来选择属性
克服了用信息增益来选择属性时偏向选择值多的属性的不足。
2.采用了一种后剪枝方法
避免树的高度无节制的增长,避免过度拟合数据
3.对于缺失值的处理
在某些情况下,可供使用的数据可能缺少某些属性的值。假如〈x,c(x)〉是样本集S中的一个训练实例,但是其属性A的值A(x)未知。
处理缺少属性值的一种策略是赋给它结点n所对应的训练实例中该属性的最常见值;
另外一种更复杂的策略是为A的每个可能值赋予一个概率。
例如,给定一个布尔属性A,如果结点n包含6个已知A=1和4个A=0的实例,那么A(x)=1的概率是0.6,而A(x)=0的概率是0.4。于是,实例x的60%被分配到A=1的分支,40%被分配到另一个分支。
C4.5就是使用这种方法处理缺少的属性值。
CART 决策树 [Breiman et al.,1984] 使用"基尼指数" (Gini index)来选择划分属性.
CART 是Classification and Regression Tree的简称,这是一种著名的决策树学习算法,分类和回归任务都可用
基尼值Gini(D): 从数据集D中随机抽取两个样本,其类别标记不一致的概率。故,Gini(D)值越小,数据集D的纯度越高。
数据集 D 的纯度可用基尼值来度量:
p k = C k D p_k = \frac{C_k}{D} pk=DCk, D为样本的所有数量, C k C^k Ck 为第 k k k 类样本的数量。
基尼指数Gini_index(D):
一般,选择使划分后基尼系数最小的属性作为最优化分属性。
请根据下图列表,按照基尼指数的划分依据,做出决策树。
序号 | 是否有房 | 婚姻状况 | 年收入 | 是否拖欠贷款 |
---|---|---|---|---|
1 | yes | single | 125k | no |
2 | no | married | 100k | no |
3 | no | single | 70k | no |
4 | yes | married | 120k | no |
5 | no | divorced | 95k | yes |
6 | no | married | 60k | no |
7 | yes | divorced | 220k | no |
8 | no | single | 85k | yes |
9 | no | married | 75k | no |
10 | no | Single | 90k | yes |
1,对数据集非序列标号属性{是否有房,婚姻状况,年收入}分别计算它们的Gini指数,取Gini指数最小的属性作为决策树的根节点属性。
第一次大循环
2,根节点的Gini值为
3,当根据是否有房来进行划分时,Gini指数计算过程为:
4,若按婚姻状况属性来划分,属性婚姻状况有三个可能的取值{married,single,divorced},分别计算划分后的Gini系数增益。
{married} | {single,divorced}
{single} | {married,divorced}
{divorced} | {single,married}
对比计算结果,根据婚姻状况属性来划分根节点时取Gini指数最小的分组作为划分结果,即:
{married} | {single,divorced}
5,同理可得年收入Gini:
对于年收入属性为数值型属性,首先需要对数据按升序排序,然后从小到大依次用相邻值的中间值作为分隔将样本划分为两组。例如当面对年收入为60和70这两个值时,我们算得其中间值为65。以中间值65作为分割点求出Gini指数。
根据计算知道,三个属性划分根节点的指数最小的有两个:年收入属性和婚姻状况,他们的指数都为0.3。此时,选取首先出现的属性【married】作为第一次划分。
第二次大循环
6,接下来,采用同样的方法,分别计算剩下属性,其中根节点的Gini系数为(此时是否拖欠贷款的各有3个records)
7,对于是否有房属性,可得:
8,对于年收入属性则有:
经过如上流程,构建的决策树,如下图:
现在我们来总结一下CART的算法流程
while(当前节点"不纯"):
1.遍历每个变量的每一种分割方式,找到最好的分割点
2.分割成两个节点N1和N2
end while
每个节点足够“纯”为止
名称 | 提出时间 | 分支方式 | 备注 |
---|---|---|---|
ID3 | 1975 | 信息增益 | ID3只能对离散属性的数据集构成决策树 |
C4.5 | 1993 | 信息增益率 | 优化后解决了ID3分支过程中总喜欢偏向选择值较多的 属性 |
CART | 1984 | Gini系数 | 可以进行分类和回归,可以处理离散属性,也可以处理连续属性 |
存在的缺点
(1) ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息.
(2) ID3算法只能对描述属性为离散型属性的数据集构造决策树。
做出的改进(为什么使用C4.5要好)
(1) 用信息增益率来选择属性
(2) 可以处理连续数值型属性
(3)采用了一种后剪枝方法
(4)对于缺失值的处理
C4.5算法的优缺点
优点:
产生的分类规则易于理解,准确率较高。
缺点:
在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
CART算法相比C4.5算法的分类方法,采用了简化的二叉树模型,同时特征选择采用了近似的基尼系数来简化计算。
C4.5不一定是二叉树,但CART一定是二叉树。
同时,无论是ID3, C4.5还是CART,在做特征选择的时候都是选择最优的一个特征来做分类决策,但是大多数,分类决策不应该是由某一个特征决定的,而是应该由一组特征决定的。这样决策得到的决策树更加准确。这个决策树叫做多变量决策树(multi-variate decision tree)。在选择最优特征的时候,多变量决策树不是选择某一个最优特征,而是选择最优的一个特征线性组合来做决策。这个算法的代表是OC1,这里不多介绍。
如果样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习里面的随机森林之类的方法解决。
如果一个分割点可以将当前的所有节点分为两类,使得每一类都很“纯”,也就是同一类的记录较多,那么就是一个好分割点。
比如上面的例子,“拥有房产”,可以将记录分成了两类,“是”的节点全部都可以偿还债务,非常“纯”;“否”的节点,可以偿还贷款和无法偿还贷款的人都有,不是很“纯”,但是两个节点加起来的纯度之和与原始节点的纯度之差最大,所以按照这种方法分割。
构建决策树采用贪心算法,只考虑当前纯度差最大的情况作为分割点。
图形描述
出现这种情况的原因:
剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段。
在决策树学习中,为了尽可能正确分类训练样本,结点划分过程将不断重复,有时会造成决策树分支过多,这时就可能因训练样本学得"太好"了,以致于把训练集自身的一些特点当作所有数据都具有的一般性质而导致过拟合。因此,可通过主动去掉一些分支来降低过拟合的风险。
如何判断决策树泛化性能是否提升呢?
假定咱们采用信息增益准则来划分属性选择,则上表中训练集将会生成一棵下面决策树。
为便于讨论,我们对圈中的部分结点做了编号。
接下来,我们一起看一下,如何对这一棵树进行剪枝。
决策树剪枝的基本策略有"预剪枝" (pre-pruning)和"后剪枝"(post- pruning) 。
首先,基于信息增益准则,我们会选取属性"脐部"来对训练集进行划分,并产生 3 个分支,如下图所示。然而,是否应该进行这个划分呢?预剪枝要对划分前后的泛化性能进行估计。
在划分之前,所有样例集中在根结点。
在用属性"脐部"划分之后,上图中的结点2、3、4分别包含编号为 {1,2,3, 14}、 {6,7, 15, 17}、 {10, 16} 的训练样例,因此这 3 个结点分别被标记为叶结点"好瓜"、 “好瓜”、 “坏瓜”。
此时,验证集中编号为 {4, 5, 8,11, 12} 的样例被分类正确,验证集精度为
5
7
∗
100
%
=
71.4
%
>
42.9
%
\frac{5}{7}*100\% = 71.4\% > 42.9\%
75∗100%=71.4%>42.9%于是,用"脐部"进行划分得以确定。
然后,决策树算法应该对结点2进行划分,基于信息增益准则将挑选出划分属性"色泽"。然而,在使用"色泽"划分后,编号为 {5} 的验证集样本分类结果会由正确转为错误,使得验证集精度下降为 57.1 % 57.1\% 57.1%。于是,预剪枝策略将禁 止结点2被划分。
对结点3,最优划分属性为"根蒂",划分后验证集精度仍为 71.4 % 71.4\% 71.4%。这个 划分不能提升验证集精度,于是,预剪枝策略禁止结点3被划分。
对结点4,其所含训练样例己属于同一类,不再进行划分.
于是,基于预剪枝策略从上表数据所生成的决策树如上图所示,其验证集精度为 71.4%. 这是一棵仅有一层划分的决策树,亦称"决策树桩" (decision stump).
后剪枝先从训练集生成一棵完整决策树,继续使用上面的案例,从前面计算,我们知前面构造的决策树的验证集精度为 42.9 % 42.9\% 42.9%
后剪枝首先考察结点6,若将其领衔的分支剪除则相当于把6替换为叶结点。替换后的叶结点包含编号为 {7, 15} 的训练样本,于是该叶结点的类别标记为"好瓜",此时决策树的验证集精度提高至
57.1
%
57.1\%
57.1%。于是,后剪枝策略决定剪枝,如下图所示。
然后考察结点5,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号为 {6,7,15}的训练样例,叶结点类别标记为"好瓜’;此时决策树验证集精度仍为
57.1
%
57.1\%
57.1%。于是,可以不进行剪枝.
对结点2,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号 为 {1, 2, 3, 14} 的训练样例,叶结点标记为"好瓜"此时决策树的验证集精度提高至 71.4 % 71.4\% 71.4%。于是,后剪枝策略决定剪枝.
对结点3和1,若将其领衔的子树替换为叶结点,则所得决策树的验证集 精度分别为 71.4 % 71.4\% 71.4% 与 42.9 % 42.9\% 42.9%,均未得到提高,于是它们被保留。
最终,基于后剪枝策略所生成的决策树就如上图所示,其验证集精度为 71.4 % 71.4\% 71.4%。
对比两种剪枝方法,
什么是特征提取呢?
将任意数据(如文本或图像)转换为可用于机器学习的数字特征
注:特征值化是为了计算机更好的去理解数据
特征提取分类:
sklearn.feature_extraction
作用:对字典数据进行特征值化
sklearn.feature_extraction.DictVectorizer(sparse=True,…)
我们对以下数据进行特征提取
[{'city': '北京','temperature':100},
{'city': '上海','temperature':60},
{'city': '深圳','temperature':30}]
from sklearn.feature_extraction import DictVectorizer
def dict_demo():
"""
对字典类型的数据进行特征抽取
:return: None
"""
data = [{'city': '北京','temperature':100},
{'city': '上海','temperature':60},
{'city': '深圳','temperature':30}]
# 1、实例化一个转换器类
transfer = DictVectorizer(sparse=False)
# 2、调用fit_transform
data = transfer.fit_transform(data)
print("返回的结果:\n", data)
# 打印特征名字
print("特征名字:\n", transfer.get_feature_names())
return None
dict_demo()
注意观察没有加上sparse=False参数的结果
返回的结果:
(0, 1) 1.0
(0, 3) 100.0
(1, 0) 1.0
(1, 3) 60.0
(2, 2) 1.0
(2, 3) 30.0
特征名字:
['city=上海', 'city=北京', 'city=深圳', 'temperature']
这个结果并不是我们想要看到的,所以加上参数,得到想要的结果:
返回的结果:
[[ 0. 1. 0. 100.]
[ 1. 0. 0. 60.]
[ 0. 0. 1. 30.]]
特征名字:
['city=上海', 'city=北京', 'city=深圳', 'temperature']
之前在学习pandas中的离散化的时候,也实现了类似的效果。我们把这个处理数据的技巧叫做”one-hot“编码
对于特征当中存在类别信息的我们都会做one-hot编码处理
作用:对文本数据进行特征值化
sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
sklearn.feature_extraction.text.TfidfVectorizer
我们对以下数据进行特征提取
["life is short,i like python",
"life is too long,i dislike python"]
from sklearn.feature_extraction.text import CountVectorizer
def text_count_demo():
"""
对文本进行特征抽取,countvetorizer
:return: None
"""
data = ["life is short,i like like python", "life is too long,i dislike python"]
# 1、实例化一个转换器类
# transfer = CountVectorizer(sparse=False) # 注意,没有sparse这个参数
transfer = CountVectorizer()
# 2、调用fit_transform
data = transfer.fit_transform(data)
print("文本特征抽取的结果:\n", data.toarray())
print("返回特征名字:\n", transfer.get_feature_names())
return None
返回结果:
文本特征抽取的结果:
[[0 1 1 2 0 1 1 0]
[1 1 1 0 1 1 0 1]]
返回特征名字:
['dislike', 'is', 'life', 'like', 'long', 'python', 'short', 'too']
问题:如果我们将数据替换成中文?
"人生苦短,我喜欢Python","生活太长久,我不喜欢Python"
那么最终得到的结果是
为什么会得到这样的结果呢,仔细分析之后会发现英文默认是以空格分开的。其实就达到了一个分词的效果,所以我们要对中文进行分词处理
jieba.cut()
:返回词语组成的生成器
对以下三句话进行特征值化
今天很残酷,明天更残酷,后天很美好,
但绝对大部分是死在明天晚上,所以每个人不要放弃今天。
我们看到的从很远星系来的光是在几百万年之前发出的,
这样当我们看到宇宙时,我们是在看它的过去。
如果只用一种方式了解某样事物,你就不会真正了解它。
了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。
分析
from sklearn.feature_extraction.text import CountVectorizer
import jieba
def cut_word(text):
"""
对中文进行分词
"我爱北京天安门"————>"我 爱 北京 天安门"
:param text:
:return: text
"""
# 用结巴对中文字符串进行分词
text = " ".join(list(jieba.cut(text)))
return text
def text_chinese_count_demo2():
"""
对中文进行特征抽取
:return: None
"""
data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
"我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
"如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
# 将原始数据转换成分好词的形式
text_list = []
for sent in data:
text_list.append(cut_word(sent))
print(text_list)
# 1、实例化一个转换器类
# transfer = CountVectorizer(sparse=False)
transfer = CountVectorizer()
# 2、调用fit_transform
data = transfer.fit_transform(text_list)
print("文本特征抽取的结果:\n", data.toarray())
print("返回特征名字:\n", transfer.get_feature_names())
return None
返回结果:
Building prefix dict from the default dictionary ...
Dumping model to file cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 1.032 seconds.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
Prefix dict has been built succesfully.
文本特征抽取的结果:
[[2 0 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 1 0]
[0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 1]
[1 1 0 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0 0]]
返回特征名字:
['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']
但如果把这样的词语特征用于分类,会出现什么问题?
请看问题:
该如何处理某个词或短语在多篇文章中出现的次数高这种情况
举例:
假如一篇文章的总词语数是100个,而词语"非常"出现了5次,那么"非常"一词在该文件中的词频就是5/100=0.05。
而计算文件频率(IDF)的方法是以文件集的文件总数,除以出现"非常"一词的文件数。
所以,如果"非常"一词在1,0000份文件出现过,而文件总数是10,000,000份的话,
其逆向文件频率就是lg(10,000,000 / 1,0000)=3。
最后"非常"对于这篇文档的tf-idf的分数为0.05 * 3=0.15
from sklearn.feature_extraction.text import TfidfVectorizer
import jieba
def cut_word(text):
"""
对中文进行分词
"我爱北京天安门"————>"我 爱 北京 天安门"
:param text:
:return: text
"""
# 用结巴对中文字符串进行分词
text = " ".join(list(jieba.cut(text)))
return text
def text_chinese_tfidf_demo():
"""
对中文进行特征抽取
:return: None
"""
data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
"我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
"如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
# 将原始数据转换成分好词的形式
text_list = []
for sent in data:
text_list.append(cut_word(sent))
print(text_list)
# 1、实例化一个转换器类
# transfer = CountVectorizer(sparse=False)
transfer = TfidfVectorizer(stop_words=['一种', '不会', '不要'])
# 2、调用fit_transform
data = transfer.fit_transform(text_list)
print("文本特征抽取的结果:\n", data.toarray())
print("返回特征名字:\n", transfer.get_feature_names())
return None
返回结果:
Building prefix dict from the default dictionary ...
Loading model from cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 0.856 seconds.
Prefix dict has been built succesfully.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
文本特征抽取的结果:
[[ 0. 0. 0. 0.43643578 0. 0. 0.
0. 0. 0.21821789 0. 0.21821789 0. 0.
0. 0. 0.21821789 0.21821789 0. 0.43643578
0. 0.21821789 0. 0.43643578 0.21821789 0. 0.
0. 0.21821789 0.21821789 0. 0. 0.21821789
0. ]
[ 0.2410822 0. 0. 0. 0.2410822 0.2410822
0.2410822 0. 0. 0. 0. 0. 0.
0. 0.2410822 0.55004769 0. 0. 0. 0.
0.2410822 0. 0. 0. 0. 0.48216441
0. 0. 0. 0. 0. 0.2410822
0. 0.2410822 ]
[ 0. 0.644003 0.48300225 0. 0. 0. 0.
0.16100075 0.16100075 0. 0.16100075 0. 0.16100075
0.16100075 0. 0.12244522 0. 0. 0.16100075
0. 0. 0. 0.16100075 0. 0. 0.
0.3220015 0.16100075 0. 0. 0.16100075 0. 0.
0. ]]
返回特征名字:
['之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']
分类机器学习算法进行文章分类中前期数据处理方式
class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
泰坦尼克号沉没是历史上最臭名昭着的沉船之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。 造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管幸存下沉有一些运气因素,但有些人比其他人更容易生存,例如妇女,儿童和上流社会。 在这个案例中,我们要求您完成对哪些人可能存活的分析。特别是,我们要求您运用机器学习工具来预测哪些乘客幸免于悲剧。
案例:https://www.kaggle.com/c/titanic/overview
经过观察数据得到:
- 1 乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。
- 2 其中age数据存在缺失。
导入需要的模块
import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz
获取数据
# 1、获取数据
titanic= pd.read_csv("./data/train.csv")
数据基本处理
# 2.数据基本处理
# 2.1 确定特征值,目标值
x = titanic[["Pclass","Age","Sex"]]
y = titanic["Survived"]
# 2.2 缺失值处理
# 缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
x["Age"].fillna(x["Age"].mean(), inplace=True)
# 2.3 数据集划分
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=22)
特征工程(字典特征抽取)
# 3.特征工程(字典特征抽取)
# 对于x转换成字典数据x.to_dict(orient="records")
# [{"pclass": "1st", "age": 29.00, "sex": "female"}, {}]
transfer = DictVectorizer(sparse=False)
x_train = transfer.fit_transform(x_train.to_dict(orient="records"))
x_test = transfer.transform(x_test.to_dict(orient="records"))
决策树模型训练和模型评估
# 4.机器学习(决策树)
estimator = DecisionTreeClassifier(criterion="entropy", max_depth=5)
estimator.fit(x_train,y_train)
# 5.模型评估
estimator.score(x_test,y_test)
estimator.predict(x_test)
决策树的结构是可以直接显示
sklearn.tree.export_graphviz() 该函数能够导出DOT格式
# 6.决策树可视化
export_graphviz(estimator, out_file="./data/tree.dot", feature_names=['Age','Pclass','Sex','Survived'])
dot文件当中的内容如下
digraph Tree {
node [shape=box] ;
0 [label="Survived <= 0.5\nentropy = 0.96\nsamples = 712\nvalue = [439, 273]"] ;
1 [label="Pclass <= 2.5\nentropy = 0.802\nsamples = 250\nvalue = [61, 189]"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
2 [label="Age <= 27.5\nentropy = 0.264\nsamples = 134\nvalue = [6, 128]"] ;
1 -> 2 ;
3 [label="Age <= 23.5\nentropy = 0.496\nsamples = 46\nvalue = [5, 41]"] ;
2 -> 3 ;
4 [label="Age <= 2.5\nentropy = 0.206\nsamples = 31\nvalue = [1, 30]"] ;
3 -> 4 ;
5 [label="entropy = 1.0\nsamples = 2\nvalue = [1, 1]"] ;
4 -> 5 ;
6 [label="entropy = 0.0\nsamples = 29\nvalue = [0, 29]"] ;
4 -> 6 ;
7 [label="Age <= 24.5\nentropy = 0.837\nsamples = 15\nvalue = [4, 11]"] ;
3 -> 7 ;
8 [label="entropy = 0.592\nsamples = 7\nvalue = [1, 6]"] ;
7 -> 8 ;
9 [label="entropy = 0.954\nsamples = 8\nvalue = [3, 5]"] ;
7 -> 9 ;
10 [label="Age <= 56.5\nentropy = 0.09\nsamples = 88\nvalue = [1, 87]"] ;
2 -> 10 ;
11 [label="entropy = 0.0\nsamples = 82\nvalue = [0, 82]"] ;
10 -> 11 ;
12 [label="Pclass <= 1.5\nentropy = 0.65\nsamples = 6\nvalue = [1, 5]"] ;
10 -> 12 ;
13 [label="entropy = 0.0\nsamples = 5\nvalue = [0, 5]"] ;
12 -> 13 ;
14 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]"] ;
12 -> 14 ;
15 [label="Age <= 38.5\nentropy = 0.998\nsamples = 116\nvalue = [55, 61]"] ;
1 -> 15 ;
16 [label="Age <= 1.5\nentropy = 0.988\nsamples = 108\nvalue = [47, 61]"] ;
15 -> 16 ;
17 [label="entropy = 0.0\nsamples = 4\nvalue = [0, 4]"] ;
16 -> 17 ;
18 [label="Age <= 32.5\nentropy = 0.993\nsamples = 104\nvalue = [47, 57]"] ;
16 -> 18 ;
19 [label="entropy = 0.997\nsamples = 100\nvalue = [47, 53]"] ;
18 -> 19 ;
20 [label="entropy = 0.0\nsamples = 4\nvalue = [0, 4]"] ;
18 -> 20 ;
21 [label="entropy = 0.0\nsamples = 8\nvalue = [8, 0]"] ;
15 -> 21 ;
22 [label="Age <= 13.0\nentropy = 0.684\nsamples = 462\nvalue = [378, 84]"] ;
0 -> 22 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
23 [label="Pclass <= 2.5\nentropy = 0.948\nsamples = 30\nvalue = [11, 19]"] ;
22 -> 23 ;
24 [label="entropy = 0.0\nsamples = 11\nvalue = [0, 11]"] ;
23 -> 24 ;
25 [label="Age <= 0.71\nentropy = 0.982\nsamples = 19\nvalue = [11, 8]"] ;
23 -> 25 ;
26 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]"] ;
25 -> 26 ;
27 [label="Age <= 11.5\nentropy = 0.964\nsamples = 18\nvalue = [11, 7]"] ;
25 -> 27 ;
28 [label="entropy = 0.937\nsamples = 17\nvalue = [11, 6]"] ;
27 -> 28 ;
29 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]"] ;
27 -> 29 ;
30 [label="Pclass <= 1.5\nentropy = 0.611\nsamples = 432\nvalue = [367, 65]"] ;
22 -> 30 ;
31 [label="Age <= 60.5\nentropy = 0.888\nsamples = 95\nvalue = [66, 29]"] ;
30 -> 31 ;
32 [label="Age <= 47.5\nentropy = 0.922\nsamples = 83\nvalue = [55, 28]"] ;
31 -> 32 ;
33 [label="entropy = 0.874\nsamples = 68\nvalue = [48, 20]"] ;
32 -> 33 ;
34 [label="entropy = 0.997\nsamples = 15\nvalue = [7, 8]"] ;
32 -> 34 ;
35 [label="Age <= 75.5\nentropy = 0.414\nsamples = 12\nvalue = [11, 1]"] ;
31 -> 35 ;
36 [label="entropy = 0.0\nsamples = 11\nvalue = [11, 0]"] ;
35 -> 36 ;
37 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]"] ;
35 -> 37 ;
38 [label="Age <= 32.25\nentropy = 0.49\nsamples = 337\nvalue = [301, 36]"] ;
30 -> 38 ;
39 [label="Age <= 30.75\nentropy = 0.535\nsamples = 254\nvalue = [223, 31]"] ;
38 -> 39 ;
40 [label="entropy = 0.483\nsamples = 239\nvalue = [214, 25]"] ;
39 -> 40 ;
41 [label="entropy = 0.971\nsamples = 15\nvalue = [9, 6]"] ;
39 -> 41 ;
42 [label="Age <= 41.5\nentropy = 0.328\nsamples = 83\nvalue = [78, 5]"] ;
38 -> 42 ;
43 [label="entropy = 0.156\nsamples = 44\nvalue = [43, 1]"] ;
42 -> 43 ;
44 [label="entropy = 0.477\nsamples = 39\nvalue = [35, 4]"] ;
42 -> 44 ;
}
那么这个结构不能看清结构,所以可以在一个网站上显示
网站:点我
将上述dot代码复制进去,就可以看到树木的图像了
前面已经讲到,关于数据类型,我们主要可以把其分为两类,连续型数据和离散型数据。在面对不同数据时,决策树也可以分为两大类型:
不管是回归决策树还是分类决策树,都会存在两个核心问题:
一个回归树对应着输入空间(即特征空间)的一个划分以及在划分单元上的输出值。分类树中,我们采用信息论中的方法,通过计算选择最佳划分点。
而在回归树中,采用的是启发式的方法。假如我们有n个特征,每个特征有
s
i
(
i
∈
(
1
,
n
)
)
s_i (i\in (1,n))
si(i∈(1,n)) 个取值,那我们遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征 j 的取值 s,使得损失函数最小,这样就得到了一个划分点。 描述该过程的公式如下
假设将输入空间划分为M个单元:
R
1
,
R
2
,
.
.
.
,
R
m
R_1,R_2,...,R_m
R1,R2,...,Rm 那么每个区域的输出值就是:
c
m
=
a
v
g
(
y
i
∣
x
i
∈
R
m
)
c_m=avg(y_i|x_i\in R_m)
cm=avg(yi∣xi∈Rm) 也就是该区域内所有点y值的平均数。
举例:
如下图,假如我们想要对楼内居民的年龄进行回归,将楼划分为3个区域 R 1 , R 2 , R 3 R_1,R_2,R_3 R1,R2,R3(红线)
那么 R 1 R_1 R1 的输出就是第一列四个居民年龄的平均值,
R 2 R_2 R2的输出就是第二列四个居民年龄的平均值,
R 3 R_3 R3的输出就是第三、四列八个居民年龄的平均值。
为了易于理解,接下来通过一个简单实例加深对回归决策树的理解。
训练数据见下表,目标是得到一棵最小二乘回归树。
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
y | 5.56 | 5.7 | 5.91 | 6.4 | 6.8 | 7.05 | 8.9 | 8.7 | 9 | 9.05 |
(1)选择最优的切分特征 j 与最优切分点 s
a、计算子区域输出值:
例如,取 s = 1.5 s=1.5 s=1.5。此时 R 1 = 1 , R 2 = 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 R1={1},R2={2,3,4,5,6,7,8,9,10} R1=1,R2=2,3,4,5,6,7,8,9,10,这两个区域的输出值分别为:
同理,得到其他各切分点的子区域输出值,如下表:
s | 1.5 | 2.5 | 3.5 | 4.5 | 5.5 | 6.5 | 7.5 | 8.5 | 9.5 |
---|---|---|---|---|---|---|---|---|---|
m(s) | 15.72 | 12.07 | 8.36 | 5.78 | 3.91 | 1.93 | 8.01 | 11.73 | 15.74 |
显然取
s
=
6.5
s=6.5
s=6.5 时,
m
(
s
)
m(s)
m(s) 最小。因此,第一个划分变量
【
j
=
x
,
s
=
6.5
】
【j=x,s=6.5】
【j=x,s=6.5】
(2)用选定的(j,s)划分区域,并决定输出值
(3)调用步骤 (1)、(2),继续划分
对 R 1 R1 R1 继续进行划分:
x | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
y | 5.56 | 5.7 | 5.91 | 6.4 | 6.8 | 7.05 |
取切分点[1.5,2.5,3.5,4.5,5.5],则各区域的输出值c如下表
s | 1.5 | 2.5 | 3.5 | 4.5 | 5.5 |
---|---|---|---|---|---|
c1 | 5.56 | 5.63 | 5.72 | 5.89 | 6.07 |
c2 | 6.37 | 6.54 | 6.75 | 6.93 | 7.05 |
计算损失函数值m(s):
s | 1.5 | 2.5 | 3.5 | 4.5 | 5.5 |
---|---|---|---|---|---|
m(s) | 1.3087 | 0.754 | 0.2771 | 0.4368 | 1.0644 |
s = 3.5 s=3.5 s=3.5时, m ( s ) m(s) m(s)最小。
(4)生成回归树
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model
# 生成数据
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05])
# 训练模型
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y)
# 模型预测
X_test = np.arange(0.0, 10.0, 0.01).reshape(-1, 1) # 生成1000个数,用于预测模型
X_test.shape
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test)
# 结果可视化
plt.figure(figsize=(10, 6), dpi=100)
plt.scatter(x, y, label="data")
plt.plot(X_test, y_1,label="max_depth=1")
plt.plot(X_test, y_2, label="max_depth=3")
plt.plot(X_test, y_3, label='liner regression')
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
结果展示:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。