当前位置:   article > 正文

基于stm32及Max30102的心率血氧检测cubemx生成_max30102心率算法

max30102心率算法

一、前言

        Max30102是一款集成了红外发光二极管、光电检测器、信号处理和数据输出功能于一体的脉搏血氧测量模块。它能够通过皮肤进行非侵入式的心率和血氧饱和度监测,常被用于可穿戴设备或医疗设备中。Max30102具有高精度、低功耗和小尺寸的特点,广泛应用于健康监测领域。于是准备做个监测心率血氧的小型设备。

二、准备

硬件:stm32f103c8t6,MAX30102,0.96寸OLED

软件:keil5

三、cubemx配置工程文件

        配置SYS,RCC,时钟数,I2C1(用于OLED),I2C2(用于MAX30102),GPIO

        PA7配置为INT引脚,输入模式,配上拉电阻(INT默认高电平,低电平有效)

        I2C1和I2C2都配置为高速I2C(只为了更快)

        生成工程文件

        生成并进入工程文件

四、MAX30102驱动

4.1 读取FIFO函数

  1. //写Data到max30102中
  2. HAL_StatusTypeDef Max30102_WriteData(uint8_t MemAddress,uint8_t Command,uint16_t SendCount)
  3. {
  4. HAL_StatusTypeDef status=HAL_OK;
  5. status=HAL_I2C_Mem_Write(&hi2c2,Max30102_Write_Address,MemAddress,I2C_MEMADD_SIZE_8BIT,&Command,SendCount,100);
  6. return status;
  7. }
  8. //I2C读取函数
  9. HAL_StatusTypeDef Max30102_ReadData(uint8_t DatAddress,uint8_t *Data,uint16_t ReceiveCount)
  10. {
  11. HAL_StatusTypeDef status=HAL_OK;
  12. status=HAL_I2C_Mem_Read(&hi2c2,Max30102_Read_Address,DatAddress,I2C_MEMADD_SIZE_8BIT,Data,ReceiveCount,100);
  13. return status;
  14. }
  15. void Max30102_FIFO_ReadData(uint8_t DatAddress,uint8_t SixData[6],uint16_t Size)
  16. {
  17. uint8_t temp;
  18. Max30102_ReadData(REG_INTR_STATUS_1,&temp,1);
  19. Max30102_ReadData(REG_INTR_STATUS_2,&temp,1);
  20. Max30102_ReadData(DatAddress,SixData,Size);
  21. }

 4.2 MAX30102初始化

  1. void Max30102_Reset(void)
  2. {
  3. Max30102_WriteData(REG_MODE_CONFIG,0x40,1);
  4. Max30102_WriteData(REG_MODE_CONFIG,0x40,1);
  5. }
  6. void Max30102_Init(void)
  7. {
  8. Max30102_Reset();
  9. Max30102_WriteData(REG_INTR_ENABLE_1,0xc0,1); // INTR setting
  10. Max30102_WriteData(REG_INTR_ENABLE_2,0x00,1);
  11. Max30102_WriteData(REG_FIFO_WR_PTR,0x00,1); //FIFO_WR_PTR[4:0]
  12. Max30102_WriteData(REG_OVF_COUNTER,0x00,1); //OVF_COUNTER[4:0]
  13. Max30102_WriteData(REG_FIFO_RD_PTR,0x00,1); //FIFO_RD_PTR[4:0]
  14. Max30102_WriteData(REG_FIFO_CONFIG,0x0f,1); //sample avg = 1, fifo rollover=false, fifo almost full = 17
  15. Max30102_WriteData(REG_MODE_CONFIG,0x03,1); //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
  16. Max30102_WriteData(REG_SPO2_CONFIG,0x27,1); // SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)
  17. Max30102_WriteData(REG_LED1_PA,0x24,1); //Choose value for ~ 7mA for LED1
  18. Max30102_WriteData(REG_LED2_PA,0x24,1); // Choose value for ~ 7mA for LED2
  19. Max30102_WriteData(REG_PILOT_PA,0x7f,1); // Choose value for ~ 25mA for Pilot LED
  20. }

        先连接好线,把初始化程序烧进去,如果MAX30102红灯亮则没问题可以继续下一步,如果红灯不亮,大概率是I2C没通,仔细检查是不是线没接好!

MAX30102接线:

 SCL-----PB10     SDA-----PB11     INT-----PA7

OLED接线:

SCL-----PB6       SDA-----PB7

4.3 MAX30102算法实现心率血氧检测

        在写MAX30102程序前先把下面的algorithm文件放入工程文件中并在Keil5中添加文件路径,这是一个针对于心率血氧的算法,把前辈研究好的东西拿来用也是不错的!algorithm文件中的.c和.h文件代码的代码我放在最下面。也可以直接下载我上传的文件解压即可。

链接:https://pan.baidu.com/s/1-GGcoyf4qizAIo3MfZ7qug 
提取码:ae86

        MAX30102心率血氧读取代码(代码以注释明确)

4.3.1 各种变量的声明

  1. uint8_t TempData[6];
  2. uint32_t red_buffer[500]; //红光数据red,用于计算心率
  3. uint32_t ir_buffer[500]; //红外数据 ir,用于计算血氧
  4. int32_t ir_buffer_length=500; //计算前500个样本得到的数据
  5. int32_t pn_SpO2_value; //血氧实际值
  6. int8_t SpO2_valid; //血氧值有效标志
  7. int32_t pn_hr_value; //心率实际值
  8. int8_t hr_valid; //心率有效标志
  9. uint32_t red_max=0,red_min=0x3FFFF; //红光取值范围
  10. uint32_t prev_data; //前一次的值
  11. float f_temp; //临时变量
  12. int32_t n_brightness; //明确变量

 4.3.2 MAX30102数据初始化函数

  1. void Max30102_Safety(void)
  2. {
  3. for(int i=0;i<ir_buffer_length;i++)
  4. {
  5. while(Max30102_INT==GPIO_PIN_SET); //等待中断引脚相应,默认为高,当触发后会拉低
  6. Max30102_FIFO_ReadData(REG_FIFO_DATA,TempData,6);
  7. red_buffer[i]=((TempData[0]&0x03)<<16) | (TempData[1]<<8) | (TempData[2]); //前三位数据组成HR
  8. ir_buffer[i]=((TempData[3]&0x03)<<16) | (TempData[4]<<8) | (TempData[5]); //后三位数据组成BO
  9. if(red_min>red_buffer[i]) red_min=red_buffer[i]; //更新当前最小值
  10. if(red_max<red_buffer[i]) red_max=red_buffer[i]; //更新当前最大值
  11. }
  12. maxim_heart_rate_and_oxygen_saturation(ir_buffer,ir_buffer_length,red_buffer,&pn_SpO2_value,&SpO2_valid,&pn_hr_value,&hr_valid);
  13. //传入500个采样,通过算法得出实际心率血氧值
  14. }

 4.3.3 心率血氧计算函数

  1. void Max30102_Calculate_HR_BO_Value(int32_t* HR_Value,int8_t* HR_Valid,int32_t* BO_Value,int8_t* BO_Valid)
  2. {
  3. for(int i=100;i<500;i++) //将数组中的100~500采样值向前挪到0~400
  4. {
  5. red_buffer[i-100]=red_buffer[i];
  6. ir_buffer[i-100]=ir_buffer[i];
  7. if(red_min>red_buffer[i]) red_min=red_buffer[i]; //更新当前最小值
  8. if(red_max<red_buffer[i]) red_max=red_buffer[i]; //更新当前最大值
  9. }
  10. for(int i=400;i<500;i++) //实际只取100个采样值来计算
  11. {
  12. prev_data=red_buffer[i-1];
  13. while(Max30102_INT==1); //等待中断引脚相应,默认为高,当触发后会拉低
  14. Max30102_FIFO_ReadData(REG_FIFO_DATA,TempData,6);
  15. red_buffer[i]=((TempData[0]&0x03)<<16) | (TempData[1]<<8) | (TempData[2]); //前三位数据组成HR
  16. ir_buffer[i]=((TempData[3]&0x03)<<16) | (TempData[4]<<8) | (TempData[5]); //后三位数据组成BO
  17. if(red_buffer[i]>prev_data)
  18. { //心率公式:|上一次的值-当前值| / (最大值-最小值) * 255
  19. f_temp=(float)(red_buffer[i]-prev_data)/(red_max-red_min)*255;
  20. n_brightness-=(int)f_temp;
  21. if(n_brightness<0) n_brightness=0;
  22. }
  23. else
  24. {
  25. f_temp=(float)(prev_data-red_buffer[i])/(red_max-red_min)*255;
  26. n_brightness+=(int)f_temp;
  27. if(n_brightness>255) n_brightness=255;
  28. }
  29. *HR_Value=pn_hr_value;
  30. *HR_Valid=hr_valid;
  31. *BO_Value=pn_SpO2_value;
  32. *BO_Valid=SpO2_valid;
  33. }
  34. maxim_heart_rate_and_oxygen_saturation(ir_buffer,ir_buffer_length,red_buffer,&pn_SpO2_value,&SpO2_valid,&pn_hr_value,&hr_valid);
  35. }

五、硬件I2c驱动OLED

        这里我仿照了江科大老师的OLED模板,只改动了OLED.c文件:

  1. #include "main.h"
  2. #include "OLED_Font.h"
  3. #include "i2c.h"
  4. #define OLED0561_ADD 0x78 //OLED的I2C地址
  5. #define COM 0x00 //OLED 指令
  6. #define DAT 0x40 //OLED 数据
  7. void OLED_WriteCommand(uint8_t I2C_Command)//写命令
  8. {
  9. HAL_I2C_Mem_Write(&hi2c1,OLED0561_ADD,COM,I2C_MEMADD_SIZE_8BIT,&I2C_Command,1,100);
  10. }
  11. void OLED_WriteData(uint8_t I2C_Data)//写数据
  12. {
  13. HAL_I2C_Mem_Write(&hi2c1,OLED0561_ADD,DAT,I2C_MEMADD_SIZE_8BIT,&I2C_Data,1,100);
  14. }
  15. /**
  16. * @brief OLED设置光标位置
  17. * @param Y 以左上角为原点,向下方向的坐标,范围:0~7
  18. * @param X 以左上角为原点,向右方向的坐标,范围:0~127
  19. * @retval 无
  20. */
  21. void OLED_SetCursor(uint8_t Y, uint8_t X)
  22. {
  23. OLED_WriteCommand(0xB0 | Y); //设置Y位置
  24. OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4)); //设置X位置高4位
  25. OLED_WriteCommand(0x00 | (X & 0x0F)); //设置X位置低4位
  26. }
  27. /**
  28. * @brief OLED清屏
  29. * @param 无
  30. * @retval 无
  31. */
  32. void OLED_Clear(void)
  33. {
  34. uint8_t i, j;
  35. for (j = 0; j < 8; j++)
  36. {
  37. OLED_SetCursor(j, 0);
  38. for(i = 0; i < 128; i++)
  39. {
  40. OLED_WriteData(0x00);
  41. }
  42. }
  43. }
  44. /**
  45. * @brief OLED显示一个字符
  46. * @param Line 行位置,范围:1~4
  47. * @param Column 列位置,范围:1~16
  48. * @param Char 要显示的一个字符,范围:ASCII可见字符
  49. * @retval 无
  50. */
  51. void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char)
  52. {
  53. uint8_t i;
  54. OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8); //设置光标位置在上半部分
  55. for (i = 0; i < 8; i++)
  56. {
  57. OLED_WriteData(OLED_F8x16[Char - ' '][i]); //显示上半部分内容
  58. }
  59. OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8); //设置光标位置在下半部分
  60. for (i = 0; i < 8; i++)
  61. {
  62. OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]); //显示下半部分内容
  63. }
  64. }
  65. /**
  66. * @brief OLED显示字符串
  67. * @param Line 起始行位置,范围:1~4
  68. * @param Column 起始列位置,范围:1~16
  69. * @param String 要显示的字符串,范围:ASCII可见字符
  70. * @retval 无
  71. */
  72. void OLED_ShowString(uint8_t Line, uint8_t Column, char *String)
  73. {
  74. uint8_t i;
  75. for (i = 0; String[i] != '\0'; i++)
  76. {
  77. OLED_ShowChar(Line, Column + i, String[i]);
  78. }
  79. }
  80. /**
  81. * @brief OLED次方函数
  82. * @retval 返回值等于X的Y次方
  83. */
  84. uint32_t OLED_Pow(uint32_t X, uint32_t Y)
  85. {
  86. uint32_t Result = 1;
  87. while (Y--)
  88. {
  89. Result *= X;
  90. }
  91. return Result;
  92. }
  93. /**
  94. * @brief OLED显示数字(十进制,正数)
  95. * @param Line 起始行位置,范围:1~4
  96. * @param Column 起始列位置,范围:1~16
  97. * @param Number 要显示的数字,范围:0~4294967295
  98. * @param Length 要显示数字的长度,范围:1~10
  99. * @retval 无
  100. */
  101. void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
  102. {
  103. uint8_t i;
  104. for (i = 0; i < Length; i++)
  105. {
  106. OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0');
  107. }
  108. }
  109. /**
  110. * @brief OLED显示数字(十进制,带符号数)
  111. * @param Line 起始行位置,范围:1~4
  112. * @param Column 起始列位置,范围:1~16
  113. * @param Number 要显示的数字,范围:-2147483648~2147483647
  114. * @param Length 要显示数字的长度,范围:1~10
  115. * @retval 无
  116. */
  117. void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length)
  118. {
  119. uint8_t i;
  120. uint32_t Number1;
  121. if (Number >= 0)
  122. {
  123. OLED_ShowChar(Line, Column, '+');
  124. Number1 = Number;
  125. }
  126. else
  127. {
  128. OLED_ShowChar(Line, Column, '-');
  129. Number1 = -Number;
  130. }
  131. for (i = 0; i < Length; i++)
  132. {
  133. OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0');
  134. }
  135. }
  136. /**
  137. * @brief OLED显示数字(十六进制,正数)
  138. * @param Line 起始行位置,范围:1~4
  139. * @param Column 起始列位置,范围:1~16
  140. * @param Number 要显示的数字,范围:0~0xFFFFFFFF
  141. * @param Length 要显示数字的长度,范围:1~8
  142. * @retval 无
  143. */
  144. void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
  145. {
  146. uint8_t i, SingleNumber;
  147. for (i = 0; i < Length; i++)
  148. {
  149. SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16;
  150. if (SingleNumber < 10)
  151. {
  152. OLED_ShowChar(Line, Column + i, SingleNumber + '0');
  153. }
  154. else
  155. {
  156. OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A');
  157. }
  158. }
  159. }
  160. /**
  161. * @brief OLED显示数字(二进制,正数)
  162. * @param Line 起始行位置,范围:1~4
  163. * @param Column 起始列位置,范围:1~16
  164. * @param Number 要显示的数字,范围:0~1111 1111 1111 1111
  165. * @param Length 要显示数字的长度,范围:1~16
  166. * @retval 无
  167. */
  168. void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
  169. {
  170. uint8_t i;
  171. for (i = 0; i < Length; i++)
  172. {
  173. OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0');
  174. }
  175. }
  176. /**
  177. * @brief OLED初始化
  178. * @param 无
  179. * @retval 无
  180. */
  181. void OLED_Init(void)
  182. {
  183. HAL_Delay(100);
  184. OLED_WriteCommand(0xAE); //关闭显示
  185. OLED_WriteCommand(0xD5); //设置显示时钟分频比/振荡器频率
  186. OLED_WriteCommand(0x80);
  187. OLED_WriteCommand(0xA8); //设置多路复用率
  188. OLED_WriteCommand(0x3F);
  189. OLED_WriteCommand(0xD3); //设置显示偏移
  190. OLED_WriteCommand(0x00);
  191. OLED_WriteCommand(0x40); //设置显示开始行
  192. OLED_WriteCommand(0xA1); //设置左右方向,0xA1正常 0xA0左右反置
  193. OLED_WriteCommand(0xC8); //设置上下方向,0xC8正常 0xC0上下反置
  194. OLED_WriteCommand(0xDA); //设置COM引脚硬件配置
  195. OLED_WriteCommand(0x12);
  196. OLED_WriteCommand(0x81); //设置对比度控制
  197. OLED_WriteCommand(0xCF);
  198. OLED_WriteCommand(0xD9); //设置预充电周期
  199. OLED_WriteCommand(0xF1);
  200. OLED_WriteCommand(0xDB); //设置VCOMH取消选择级别
  201. OLED_WriteCommand(0x30);
  202. OLED_WriteCommand(0xA4); //设置整个显示打开/关闭
  203. OLED_WriteCommand(0xA6); //设置正常/倒转显示
  204. OLED_WriteCommand(0x8D); //设置充电泵
  205. OLED_WriteCommand(0x14);
  206. OLED_WriteCommand(0xAF); //开启显示
  207. OLED_Clear(); //OLED清屏
  208. }

六、最终测试程序

        main.c中的删减版,只为了演示,大家不用删:

  1. #include "main.h"
  2. #include "i2c.h"
  3. #include "gpio.h"
  4. #include "OLED.h"
  5. #include "Max30102.h"
  6. void SystemClock_Config(void);
  7. int main(void)
  8. {
  9. int32_t HR_Value,BO_Value;
  10. int8_t HR_Valid,BO_Valid;
  11. HAL_Init();
  12. SystemClock_Config();
  13. MX_GPIO_Init();
  14. MX_I2C1_Init();
  15. MX_I2C2_Init();
  16. OLED_Init();
  17. OLED_ShowString(4,1,"jikli");
  18. Max30102_Init();
  19. Max30102_Safety();
  20. while (1)
  21. {
  22. Max30102_Calculate_HR_BO_Value(&HR_Value,&HR_Valid,&BO_Value,&BO_Valid);
  23. if(HR_Valid==1 && BO_Valid==1)
  24. {
  25. OLED_ShowString(1,1,"HR:");
  26. OLED_ShowString(2,1,"BO:");
  27. OLED_ShowNum(1,5,HR_Value,3);
  28. OLED_ShowNum(2,5,BO_Value,3);
  29. }
  30. }
  31. }

        最终实验效果:刚开始测得有点久而且数值不稳,要多测一会才能稳定。

七、algorithm代码补充 

algorithm.c:

  1. /** \file algorithm.c ******************************************************
  2. *
  3. * Project: MAXREFDES117#
  4. * Filename: algorithm.cpp
  5. * Description: This module calculates the heart rate/SpO2 level
  6. *
  7. *
  8. * --------------------------------------------------------------------
  9. *
  10. * This code follows the following naming conventions:
  11. *
  12. * char ch_pmod_value
  13. * char (array) s_pmod_s_string[16]
  14. * float f_pmod_value
  15. * int32_t n_pmod_value
  16. * int32_t (array) an_pmod_value[16]
  17. * int16_t w_pmod_value
  18. * int16_t (array) aw_pmod_value[16]
  19. * uint16_t uw_pmod_value
  20. * uint16_t (array) auw_pmod_value[16]
  21. * uint8_t uch_pmod_value
  22. * uint8_t (array) auch_pmod_buffer[16]
  23. * uint32_t un_pmod_value
  24. * int32_t * pn_pmod_value
  25. *
  26. * ------------------------------------------------------------------------- */
  27. /*******************************************************************************
  28. * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
  29. *
  30. * Permission is hereby granted, free of charge, to any person obtaining a
  31. * copy of this software and associated documentation files (the "Software"),
  32. * to deal in the Software without restriction, including without limitation
  33. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  34. * and/or sell copies of the Software, and to permit persons to whom the
  35. * Software is furnished to do so, subject to the following conditions:
  36. *
  37. * The above copyright notice and this permission notice shall be included
  38. * in all copies or substantial portions of the Software.
  39. *
  40. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  41. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  42. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  43. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
  44. * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  45. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  46. * OTHER DEALINGS IN THE SOFTWARE.
  47. *
  48. * Except as contained in this notice, the name of Maxim Integrated
  49. * Products, Inc. shall not be used except as stated in the Maxim Integrated
  50. * Products, Inc. Branding Policy.
  51. *
  52. * The mere transfer of this software does not imply any licenses
  53. * of trade secrets, proprietary technology, copyrights, patents,
  54. * trademarks, maskwork rights, or any other form of intellectual
  55. * property whatsoever. Maxim Integrated Products, Inc. retains all
  56. * ownership rights.
  57. *******************************************************************************
  58. */
  59. #include "algorithm.h"
  60. const uint16_t auw_hamm[31]={ 41, 276, 512, 276, 41 }; //Hamm= long16(512* hamming(5)');
  61. //uch_spo2_table is computed as -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ;
  62. const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99,
  63. 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
  64. 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97,
  65. 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91,
  66. 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81,
  67. 80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67,
  68. 66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50,
  69. 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29,
  70. 28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5,
  71. 3, 2, 1 } ;
  72. static int32_t an_dx[ BUFFER_SIZE-MA4_SIZE]; // delta
  73. static int32_t an_x[ BUFFER_SIZE]; //ir
  74. static int32_t an_y[ BUFFER_SIZE]; //red
  75. void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid,
  76. int32_t *pn_heart_rate, int8_t *pch_hr_valid)
  77. /**
  78. * \brief Calculate the heart rate and SpO2 level
  79. * \par Details
  80. * By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
  81. * Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
  82. * Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
  83. *
  84. * \param[in] *pun_ir_buffer - IR sensor data buffer
  85. * \param[in] n_ir_buffer_length - IR sensor data buffer length
  86. * \param[in] *pun_red_buffer - Red sensor data buffer
  87. * \param[out] *pn_spo2 - Calculated SpO2 value
  88. * \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid
  89. * \param[out] *pn_heart_rate - Calculated heart rate value
  90. * \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid
  91. *
  92. * \retval None
  93. */
  94. {
  95. uint32_t un_ir_mean ,un_only_once ;
  96. int32_t k ,n_i_ratio_count;
  97. int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx;
  98. int32_t n_th1, n_npks,n_c_min;
  99. int32_t an_ir_valley_locs[15] ;
  100. int32_t an_exact_ir_valley_locs[15] ;
  101. int32_t an_dx_peak_locs[15] ;
  102. int32_t n_peak_interval_sum;
  103. int32_t n_y_ac, n_x_ac;
  104. int32_t n_spo2_calc;
  105. int32_t n_y_dc_max, n_x_dc_max;
  106. int32_t n_y_dc_max_idx, n_x_dc_max_idx;
  107. int32_t an_ratio[5],n_ratio_average;
  108. int32_t n_nume, n_denom ;
  109. // remove DC of ir signal
  110. un_ir_mean =0;
  111. for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ;
  112. un_ir_mean =un_ir_mean/n_ir_buffer_length ;
  113. for (k=0 ; k<n_ir_buffer_length ; k++ ) an_x[k] = pun_ir_buffer[k] - un_ir_mean ;
  114. // 4 pt Moving Average
  115. for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
  116. n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]);
  117. an_x[k]= n_denom/(int32_t)4;
  118. }
  119. // get difference of smoothed IR signal
  120. for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++)
  121. an_dx[k]= (an_x[k+1]- an_x[k]);
  122. // 2-pt Moving Average to an_dx
  123. for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){
  124. an_dx[k] = ( an_dx[k]+an_dx[k+1])/2 ;
  125. }
  126. // hamming window
  127. // flip wave form so that we can detect valley with peak detector
  128. for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){
  129. s= 0;
  130. for( k=i; k<i+ HAMMING_SIZE ;k++){
  131. s -= an_dx[k] *auw_hamm[k-i] ;
  132. }
  133. an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm
  134. }
  135. n_th1=0; // threshold calculation
  136. for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){
  137. n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ;
  138. }
  139. n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE);
  140. // peak location is acutally index for sharpest location of raw signal since we flipped the signal
  141. maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks
  142. n_peak_interval_sum =0;
  143. if (n_npks>=2){
  144. for (k=1; k<n_npks; k++)
  145. n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]);
  146. n_peak_interval_sum=n_peak_interval_sum/(n_npks-1);
  147. *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes
  148. *pch_hr_valid = 1;
  149. }
  150. else {
  151. *pn_heart_rate = -999;
  152. *pch_hr_valid = 0;
  153. }
  154. for ( k=0 ; k<n_npks ;k++)
  155. an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2;
  156. // raw value : RED(=y) and IR(=X)
  157. // we need to assess DC and AC value of ir and red PPG.
  158. for (k=0 ; k<n_ir_buffer_length ; k++ ) {
  159. an_x[k] = pun_ir_buffer[k] ;
  160. an_y[k] = pun_red_buffer[k] ;
  161. }
  162. // find precise min near an_ir_valley_locs
  163. n_exact_ir_valley_locs_count =0;
  164. for(k=0 ; k<n_npks ;k++){
  165. un_only_once =1;
  166. m=an_ir_valley_locs[k];
  167. n_c_min= 16777216;//2^24;
  168. if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){
  169. for(i= m-5;i<m+5; i++)
  170. if (an_x[i]<n_c_min){
  171. if (un_only_once >0){
  172. un_only_once =0;
  173. }
  174. n_c_min= an_x[i] ;
  175. an_exact_ir_valley_locs[k]=i;
  176. }
  177. if (un_only_once ==0)
  178. n_exact_ir_valley_locs_count ++ ;
  179. }
  180. }
  181. if (n_exact_ir_valley_locs_count <2 ){
  182. *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range
  183. *pch_spo2_valid = 0;
  184. return;
  185. }
  186. // 4 pt MA
  187. for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
  188. an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4;
  189. an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4;
  190. }
  191. //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
  192. //finding AC/DC maximum of raw ir * red between two valley locations
  193. n_ratio_average =0;
  194. n_i_ratio_count =0;
  195. for(k=0; k< 5; k++) an_ratio[k]=0;
  196. for (k=0; k< n_exact_ir_valley_locs_count; k++){
  197. if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){
  198. *pn_spo2 = -999 ; // do not use SPO2 since valley loc is out of range
  199. *pch_spo2_valid = 0;
  200. return;
  201. }
  202. }
  203. // find max between two valley locations
  204. // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2
  205. for (k=0; k< n_exact_ir_valley_locs_count-1; k++){
  206. n_y_dc_max= -16777216 ;
  207. n_x_dc_max= - 16777216;
  208. if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){
  209. for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){
  210. if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; }
  211. if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;}
  212. }
  213. n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red
  214. n_y_ac= an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]) ;
  215. n_y_ac= an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw
  216. n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
  217. n_x_ac= an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]);
  218. n_x_ac= an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw
  219. n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
  220. n_denom= ( n_x_ac *n_y_dc_max)>>7;
  221. if (n_denom>0 && n_i_ratio_count <5 && n_nume != 0)
  222. {
  223. an_ratio[n_i_ratio_count]= (n_nume*20)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ; ///*************************n_nume原来是*100************************//
  224. n_i_ratio_count++;
  225. }
  226. }
  227. }
  228. maxim_sort_ascend(an_ratio, n_i_ratio_count);
  229. n_middle_idx= n_i_ratio_count/2;
  230. if (n_middle_idx >1)
  231. n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median
  232. else
  233. n_ratio_average = an_ratio[n_middle_idx ];
  234. if( n_ratio_average>2 && n_ratio_average <184){
  235. n_spo2_calc= uch_spo2_table[n_ratio_average] ;
  236. *pn_spo2 = n_spo2_calc ;
  237. *pch_spo2_valid = 1;// float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table
  238. }
  239. else{
  240. *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range
  241. *pch_spo2_valid = 0;
  242. }
  243. }
  244. void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
  245. /**
  246. * \brief Find peaks
  247. * \par Details
  248. * Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
  249. *
  250. * \retval None
  251. */
  252. {
  253. maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height );
  254. maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance );
  255. *pn_npks = min( *pn_npks, n_max_num );
  256. }
  257. void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height)
  258. /**
  259. * \brief Find peaks above n_min_height
  260. * \par Details
  261. * Find all peaks above MIN_HEIGHT
  262. *
  263. * \retval None
  264. */
  265. {
  266. int32_t i = 1, n_width;
  267. *pn_npks = 0;
  268. while (i < n_size-1){
  269. if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){ // find left edge of potential peaks
  270. n_width = 1;
  271. while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width]) // find flat peaks
  272. n_width++;
  273. if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){ // find right edge of peaks
  274. pn_locs[(*pn_npks)++] = i;
  275. // for flat peaks, peak location is left edge
  276. i += n_width+1;
  277. }
  278. else
  279. i += n_width;
  280. }
  281. else
  282. i++;
  283. }
  284. }
  285. void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
  286. /**
  287. * \brief Remove peaks
  288. * \par Details
  289. * Remove peaks separated by less than MIN_DISTANCE
  290. *
  291. * \retval None
  292. */
  293. {
  294. int32_t i, j, n_old_npks, n_dist;
  295. /* Order peaks from large to small */
  296. maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks );
  297. for ( i = -1; i < *pn_npks; i++ ){
  298. n_old_npks = *pn_npks;
  299. *pn_npks = i+1;
  300. for ( j = i+1; j < n_old_npks; j++ ){
  301. n_dist = pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1
  302. if ( n_dist > n_min_distance || n_dist < -n_min_distance )
  303. pn_locs[(*pn_npks)++] = pn_locs[j];
  304. }
  305. }
  306. // Resort indices longo ascending order
  307. maxim_sort_ascend( pn_locs, *pn_npks );
  308. }
  309. void maxim_sort_ascend(int32_t *pn_x,int32_t n_size)
  310. /**
  311. * \brief Sort array
  312. * \par Details
  313. * Sort array in ascending order (insertion sort algorithm)
  314. *
  315. * \retval None
  316. */
  317. {
  318. int32_t i, j, n_temp;
  319. for (i = 1; i < n_size; i++) {
  320. n_temp = pn_x[i];
  321. for (j = i; j > 0 && n_temp < pn_x[j-1]; j--)
  322. pn_x[j] = pn_x[j-1];
  323. pn_x[j] = n_temp;
  324. }
  325. }
  326. void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
  327. /**
  328. * \brief Sort indices
  329. * \par Details
  330. * Sort indices according to descending order (insertion sort algorithm)
  331. *
  332. * \retval None
  333. */
  334. {
  335. int32_t i, j, n_temp;
  336. for (i = 1; i < n_size; i++) {
  337. n_temp = pn_indx[i];
  338. for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--)
  339. pn_indx[j] = pn_indx[j-1];
  340. pn_indx[j] = n_temp;
  341. }
  342. }

algorithm.h:

  1. #ifndef ALGORITHM_H_
  2. #define ALGORITHM_H_
  3. #include "main.h"
  4. #define true 1
  5. #define false 0
  6. #define FS 100
  7. #define BUFFER_SIZE (FS* 5)
  8. #define HR_FIFO_SIZE 7
  9. #define MA4_SIZE 4 // DO NOT CHANGE
  10. #define HAMMING_SIZE 5// DO NOT CHANGE
  11. #define min(x,y) ((x) < (y) ? (x) : (y))
  12. void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer , int32_t n_ir_buffer_length, uint32_t *pun_red_buffer , int32_t *pn_spo2, int8_t *pch_spo2_valid , int32_t *pn_heart_rate , int8_t *pch_hr_valid);
  13. void maxim_find_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num );
  14. void maxim_peaks_above_min_height( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height );
  15. void maxim_remove_close_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance );
  16. void maxim_sort_ascend( int32_t *pn_x, int32_t n_size );
  17. void maxim_sort_indices_descend( int32_t *pn_x, int32_t *pn_indx, int32_t n_size);
  18. #endif /* ALGORITHM_H_ */

八、代码获取

1.百度网盘:

链接:https://pan.baidu.com/s/1B-Jg4EzXZLRFvTf-tbaZog 
提取码:ae87

2.我的资源下载解压

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/590092
推荐阅读
相关标签
  

闽ICP备14008679号