当前位置:   article > 正文

Sylvester矩阵、子结式、辗转相除法的三者关系(第三部分)

Sylvester矩阵、子结式、辗转相除法的三者关系(第三部分)

2. 执行辗转相除法第二步

F 1 = Q 2 × F 2 + F 3            deg ⁡ ( F 1 ) = 7        deg ⁡ ( F 2 ) = 6        deg ⁡ ( F 3 ) = 5 F_{1} = Q_{2} \times F_{2} + F_{3}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{1} \right) = 7\ \ \ \ \ \ \deg\left( F_{2} \right) = 6\ \ \ \ \ \ \deg\left( F_{3} \right) = 5 F1=Q2×F2+F3          deg(F1)=7      deg(F2)=6      deg(F3)=5

∣ S ′ ∣ = F 1 F 1 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F 1 F 1 F 1 F 1 F 1 F 1 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 ∣ = F 1 F 1 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F 3 F 3 F 3 F 3 F 3 F 3 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 ∣ \left| S^{'} \right| =

\begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \end{matrix}
& \left|
b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c000b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b0
\right| \end{matrix} =
\begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \end{matrix}
& \left|
b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c00000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d0
\right| \end{matrix} S =F1F1F2F2F2F2F2F2F2F1F1F1F1F1F1 b700000000000000b6b70000000000000b5b6c6000000b700000b4b5c5c600000b6b70000b3b4c4c5c60000b5b6b7000b2b3c3c4c5c6000b4b5b6b700b1b2c2c3c4c5c600b3b4b5b6b70b0b1c1c2c3c4c5c60b2b3b4b5b6b70b0c0c1c2c3c4c5c6b1b2b3b4b5b6000c0c1c2c3c4c5b0b1b2b3b4b50000c0c1c2c3c40b0b1b2b3b400000c0c1c2c300b0b1b2b3000000c0c1c2000b0b1b20000000c0c10000b0b100000000c000000b0 =F1F1F2F2F2F2F2F2F2F3F3F3F3F3F3 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5c60000d500000b2b3c3c4c5c6000d4d50000b1b2c2c3c4c5c600d3d4d5000b0b1c1c2c3c4c5c60d2d3d4d5000b0c0c1c2c3c4c5c6d1d2d3d4d50000c0c1c2c3c4c5d0d1d2d3d4d50000c0c1c2c3c40d0d1d2d3d400000c0c1c2c300d0d1d2d3000000c0c1c2000d0d1d20000000c0c10000d0d100000000c000000d0

对应子结式 S 5 S_{5} S5

S 5 = ( − 1 ) ( m − 5 ) ( l − 5 ) d e t p o l ( F 1 F 1 F 1 F 0 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = ( − 1 ) ( m − 5 ) ( l − 5 ) d e t p o l ( F 1 F 1 F 2 F 2 F 3 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 ) ) S_{5} = ( - 1)^{(m - 5)(l - 5)}detpol

\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{1} \\ F_{0} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix}
\end{pmatrix} = ( - 1)^{(m - 5)(l - 5)}detpol
\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \end{pmatrix}
\end{pmatrix} S5=(1)(m5)(l5)detpol F1F1F1F0F0 b700a80b6b70a7a8b5b6b7a6a7b4b5b6a5a6b3b4b5a4a5b2b3b4a3a4b1b2b3a2a3b0b1b2a1a20b0b1a0a100b00a0 =(1)(m5)(l5)detpol F1F1F2F2F3 b70000b6b7000b5b6c600b4b5c5c60b3b4c4c5d5b2b3c3c4d4b1b2c2c3d3b0b1c1c2d20b0c0c1d1000c0d0

3.执行辗转相除法第三步

F 2 = Q 3 × F 3 + F 4            deg ⁡ ( F 2 ) = 6        deg ⁡ ( F 3 ) = 5        deg ⁡ ( F 4 ) = 4 F_{2} = Q_{3} \times F_{3} + F_{4}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{2} \right) = 6\ \ \ \ \ \ \deg\left( F_{3} \right) = 5\ \ \ \ \ \ \deg\left( F_{4} \right) = 4 F2=Q3×F3+F4          deg(F2)=6      deg(F3)=5      deg(F4)=4

∣ S ′ ∣ = F 1 F 1 F 2 F 2 F 3 F 3 F 3 F 3 F 3 F 3 F 2 F 2 F 2 F 2 F 2 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ∣ = F 1 F 1 F 2 F 2 F 3 F 3 F 3 F 3 F 3 F 3 F 4 F 4 F 4 F 4 F 4 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 ∣ \left| S^{'} \right| =

\begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{2} \end{matrix}
& \left|
b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0
\right| \end{matrix} =
\begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{4} \end{matrix}
& \left|
b7b6b5b4b3b2b1b000000000b7b6b5b4b3b2b1b000000000c6c5c4c3c2c1c0000000000c6c5c4c3c2c1c0000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d00000000000d5d4d3d2d1d0000000e4e3e2e1e000000000000e4e3e2e1e000000000000e4e3e2e1e000000000000e4e3e2e1e000000000000e4e3e2e1e0
\right| \end{matrix} S =F1F1F2F2F3F3F3F3F3F3F2F2F2F2F2 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5d500000c60000b2b3c3c4d4d50000c5c6000b1b2c2c3d3d4d5000c4c5c600b0b1c1c2d2d3d4d500c3c4c5c600b0c0c1d1d2d3d4d50c2c3c4c5c6000c0d0d1d2d3d4d5c1c2c3c4c500000d0d1d2d3d4c0c1c2c3c4000000d0d1d2d30c0c1c2c30000000d0d1d200c0c1c200000000d0d1000c0c1000000000d00000c0 =F1F1F2F2F3F3F3F3F3F3F4F4F4F4F4 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5d50000000000b2b3c3c4d4d5000000000b1b2c2c3d3d4d5000e40000b0b1c1c2d2d3d4d500e3e40000b0c0c1d1d2d3d4d50e2e3e400000c0d0d1d2d3d4d5e1e2e3e4000000d0d1d2d3d4e0e1e2e3e4000000d0d1d2d30e0e1e2e30000000d0d1d200e0e1e200000000d0d1000e0e1000000000d00000e0

对应子结式 S 4 S_{4} S4

S 4 = ( − 1 ) ( m − 4 ) ( l − 4 ) d e t p o l ( F 1 F 1 F 1 F 1 F 0 F 0 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = ( − 1 ) ( m − 4 ) ( l − 4 ) d e t p o l ( F 1 F 1 F 2 F 2 F 3 F 3 F 4 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 ) ) S_{4} = ( - 1)^{(m - 4)(l - 4)}detpol

\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{0} \\ F_{0} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix}
\end{pmatrix} = ( - 1)^{(m - 4)(l - 4)}detpol
\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} \end{pmatrix}
\end{pmatrix} S4=(1)(m4)(l4)detpol F1F1F1F1F0F0F0 b7000a800b6b700a7a80b5b6b70a6a7a8b4b5b6b7a5a6a7b3b4b5b6a4a5a6b2b3b4b5a3a4a5b1b2b3b4a2a3a4b0b1b2b3a1a2a30b0b1b2a0a1a200b0b10a0a1000b000a0 =(1)(m4)(l4)detpol F1F1F2F2F3F3F4 b7000000b6b700000b5b6c60000b4b5c5c6000b3b4c4c5d500b2b3c3c4d4d50b1b2c2c3d3d4e4b0b1c1c2d2d3e30b0c0c1d1d2e2000c0d0d1e100000d0e0

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/613801
推荐阅读
相关标签
  

闽ICP备14008679号