当前位置:   article > 正文

DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Images Segmen_dcunet代码

dcunet代码

1 Main Contribution

  1. Designed efficient CNN architecture to replace encoder and decoder
  2. applied residual module to replace skip connection between encoder and decoder to improve based on state-of-art U-Net model

2 Datasets

在这里插入图片描述

  • In-house IR breast dataset contains 450 infrared images from 14 patients and 16 healthy volunteers; resolution is 256*128
  • EMdataset is 2D EM(电子显微镜图像,公有):contains 30 images in its training set from a serial section Transmission Electron Microscopy (ssTEM) of the Drosophila(果蝇幼虫EM图像), resolution is 256*256; Use 5-Fold cross-validation
  • Endoscopy images(内窥镜图像 公有): CVC-ClinicDB dataset extracte from the colonoscopy(结肠镜检查), contains total 612 images; resolution is 128*96

3 Data Augment

  1. convert 16-bit to 8-bit and resize 256*128 for thermography breast database
  2. resize 256*256 for other databases

4 Initialization

  1. All convolutional layers are activated by ReLU
  2. Each ReLU later use batch normalization
  3. Final output layer activated by Sigmoid
  4. Use binary cross-entropy as loss function
  5. Use Adam optimizer with the parameter 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/626169
推荐阅读
相关标签