当前位置:   article > 正文

java实现平衡二叉树(AVL 树)_java造平衡二叉树

java造平衡二叉树

一、案例(说明二叉排序树可能的问题)

给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.
左边 BST 存在的问题分析:

  1. 左子树全部为空,从形式上看,更像一个单链表.
  2. 插入速度没有影响
  3. 查询速度明显降低(因为需要依次比较),不能发挥BST的优势,因为每次还需要比较左子树,其查询速度比单链表还慢
  4. 解决方案-平衡二叉树(AVL)

二、基本介绍

  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancingbinarysearchtree)又被称为AVL树,可以保证查询效率较高。
  2. 具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
  3. 举例说明,看看下面哪些AVL树,为什么?
    在这里插入图片描述

三、应用案例-单旋转(左旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {4,3,6,5,7,8}
  2. 思路分析(示意图)
    在这里插入图片描述

四、应用案例-单旋转(右旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}
  2. 思路分析(示意图)
    在这里插入图片描述

五、应用案例-双旋转

前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转 不能完成平衡二叉树的转换。比如数列
int[] arr = { 10, 11, 7, 6, 8, 9 }; 运行原来的代码可以看到,并没有转成 AVL 树.
int[] arr = {2,1,6,5,7,3}; // 运行原来的代码可以看到,并没有转成 AVL 树

1) 问题分析

在这里插入图片描述

2) 解决思路分析

  1. 当符号右旋转的条件时
  2. 如果它的左子树的右子树高度大于它的左子树的高度
  3. 先对当前这个结点的左节点进行左旋转
  4. 在对当前结点进行右旋转的操作即可

六、代码

package avl;

/**
 * @program: text
 * @description: 平衡二叉树
 * @author: min
 * @create: 2019-09-22 17:57
 **/
public class AVLTreeDemo {
    public static void main(String[] args) {
        //int[] arr = {4,3,6,5,7,8};
        //int[] arr = { 10, 12, 8, 9, 7, 6 };
        int[] arr = { 10, 11, 7, 6, 8, 9 };
        // 创建一个 AVLTree 对象
        AVLTree avlTree = new AVLTree(); //添加结点
        for (int i = 0; i < arr.length; i++) {
            avlTree.add(new Node(arr[i]));
        }
        //遍历 System.out.println("中序遍历"); avlTree.infixOrder();
        System.out.println("在平衡处理~~");
        System.out.println("树的高度=" + avlTree.getRoot().height()); //3
        System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
        System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
        System.out.println("当前的根结点=" + avlTree.getRoot());//8
    }
}

// 创建 AVLTree
class AVLTree {
    private Node root;

    public Node getRoot() {
        return root;
    }

    // 查找要删除的结点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }

    // 查找父结点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    /**
     * 1. 返回的 以 node 为根结点的二叉排序树的最小结点的值
     * 2. 删除 node 为根结点的二叉排序树的最小结点
     *
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以 node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        // 循环的查找左子节点,就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        // 这时 target 就指向了最小结点
        // 删除最小结点
        delNode(target.value);
        return target.value;
    }

    // 删除结点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            // 1.需求先去找到要删除的结点 targetNode
            Node targetNode = search(value);
            // 如果没有找到要删除的结点
            if (targetNode == null) {
                return;
            }
            // 如果我们发现当前这颗二叉排序树只有一个结点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            // 去找到 targetNode 的父结点
            Node parent = searchParent(value);
            // 如果要删除的结点是叶子结点
            if (targetNode.left == null && targetNode.right == null) {
                // 判断 targetNode 是父结点的左子结点,还是右子结点
                if (parent.left != null && parent.left.value == value) { // 是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {// 是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else { // 删除只有一颗子树的结点
                // 如果要删除的结点有左子结点
                if (targetNode.left != null) {
                    if (parent != null) {
                        // 如果 targetNode 是 parent 的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { // targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else { // 如果要删除的结点有右子结点
                    if (parent != null) {
                        // 如果 targetNode 是 parent 的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { // 如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }
    }

    // 添加结点的方法
    public void add(Node node) {
        if (root == null) {
            root = node;// 如果 root 为空则直接让 root 指向 node
        } else {
            root.add(node);
        }
    }

    // 中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

// 创建 Node 结点
class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    // 返回左子树的高度
    public int leftHeight() {
        if (left == null) {
            return 0;
        }
        return left.height();
    }

    // 返回右子树的高度
    public int rightHeight() {
        if (right == null) {
            return 0;
        }
        return right.height();
    }

    // 返回 以该结点为根结点的树的高度
    public int height() {
        return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
    }

    //左旋转方法
    private void leftRotate() {
        //创建新的结点,以当前根结点的值
        Node newNode = new Node(value);
        //把新的结点的左子树设置成当前结点的左子树
        newNode.left = left;
        //把新的结点的右子树设置成带你过去结点的右子树的左子树
        newNode.right = right.left;
        //把当前结点的值替换成右子结点的值
        value = right.value;
        //把当前结点的右子树设置成当前结点右子树的右子树
        right = right.right;
        //把当前结点的左子树(左子结点)设置成新的结点
        left = newNode;
    }

    //右旋转
    private void rightRotate() {
        Node newNode = new Node(value);
        newNode.right = right;
        newNode.left = left.right;
        value = left.value;
        left = left.left;
        right = newNode;
    }


    /**
     * 查找要删除的结点
     *
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点,否则返回 null
     */
    public Node search(int value) {
        if (value == this.value) { // 找到就是该结点
            return this;
        } else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
            // 如果左子结点为空
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else { // 如果查找的值不小于当前结点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }

    /**
     * 查找要删除结点的父结点
     *
     * @param value 要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回 null
     */
    public Node searchParent(int value) {
        // 如果当前结点就是要删除的结点的父结点,就返回
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
            return this;
        } else {
            // 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value); // 向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); // 向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }
    }

    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }

    /**
     * 添加结点的方法
     * 归的形式添加结点,注意需要满足二叉排序树的要求
     *
     * @param node
     */
    public void add(Node node) {
        if (node == null) {
            return;
        }
        // 判断传入的结点的值,和当前子树的根结点的值关系
        if (node.value < this.value) {
            // 如果当前结点左子结点为 null
            if (this.left == null) {
                this.left = node;
            } else {
                // 递归的向左子树添加
                this.left.add(node);
            }
        } else { // 添加的结点的值大于 当前结点的值
            if (this.right == null) {
                this.right = node;
            } else {
                // 递归的向右子树添加
                this.right.add(node);
            }
        }

        //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
        if (rightHeight() - leftHeight() > 1) {
            //如果它的右子树的左子树的高度大于它的右子树的右子树的高度
            if (right != null && right.leftHeight() > right.rightHeight()) {
                //先对右子结点进行右旋转
                right.rightRotate(); //然后在对当前结点进行左旋转
                leftRotate(); //左旋转..
            } else {
                //直接进行左旋转即可
                leftRotate();
            }

            return; //必须要!!!
        }

        //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
        if (leftHeight() - rightHeight() > 1) {
            //如果它的左子树的右子树高度大于它的左子树的高度
            if (left != null && left.rightHeight() > left.leftHeight()) {
                //先对当前结点的左结点(左子树)->左旋转
                left.leftRotate(); //再对当前结点进行右旋转
                rightRotate();
            } else { //直接进行右旋转即可
                rightRotate();
            }
        }
    }

    // 中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324

转载至:尚硅谷_韩顺平_图解Java数据结构和算法.pdf

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/632132
推荐阅读
相关标签
  

闽ICP备14008679号