当前位置:   article > 正文

pytorch搭建squeezenet网络的整套工程(升级版)_pytorch squeezenet 源码及使用

pytorch squeezenet 源码及使用

上一篇当中,使用pytorch搭建了一个squeezenet,效果还行。但是偶然间发现了一个稍微改动的版本,拿来测试一下发现效果会更好,大概网络结构还是没有变,还是如下的第二个版本:
在这里插入图片描述
具体看网络结构代码:

import torch
import torch.nn as nn


class Fire(nn.Module):

    def __init__(self, in_channel, out_channel, squzee_channel):

        super().__init__()
        self.squeeze = nn.Sequential(
            nn.Conv2d(in_channel, squzee_channel, 1),
            nn.BatchNorm2d(squzee_channel),
            nn.ReLU(inplace=True)
        )

        self.expand_1x1 = nn.Sequential(
            nn.Conv2d(squzee_channel, int(out_channel / 2), 1),
            nn.BatchNorm2d(int(out_channel / 2)),
            nn.ReLU(inplace=True)
        )

        self.expand_3x3 = nn.Sequential(
            nn.Conv2d(squzee_channel, int(out_channel / 2), 3, padding=1),
            nn.BatchNorm2d(int(out_channel / 2)),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):

        x = self.squeeze(x)
        x = torch.cat([
            self.expand_1x1(x),
            self.expand_3x3(x)
        ], 1)

        return x

class SqueezeNet(nn.Module):

    """mobile net with simple bypass"""
    def __init__(self, class_num=100):

        super().__init__()
        self.stem = nn.Sequential(
            nn.Conv2d(3, 96, 3, padding=1),
            nn.BatchNorm2d(96),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2)
        )

        self.fire2 = Fire(96, 128, 16)
        self.fire3 = Fire(128, 128, 16)
        self.fire4 = Fire(128, 256, 32)
        self.fire5 = Fire(256, 256, 32)
        self.fire6 = Fire(256, 384, 48)
        self.fire7 = Fire(384, 384, 48)
        self.fire8 = Fire(384, 512, 64)
        self.fire9 = Fire(512, 512, 64)

        self.conv10 = nn.Conv2d(512, class_num, 1)
        self.avg = nn.AdaptiveAvgPool2d(1)
        self.maxpool = nn.MaxPool2d(2, 2)

    def forward(self, x):
        x = self.stem(x)

        f2 = self.fire2(x)
        f3 = self.fire3(f2) + f2
        f4 = self.fire4(f3)
        f4 = self.maxpool(f4)

        f5 = self.fire5(f4) + f4
        f6 = self.fire6(f5)
        f7 = self.fire7(f6) + f6
        f8 = self.fire8(f7)
        f8 = self.maxpool(f8)

        f9 = self.fire9(f8)
        c10 = self.conv10(f9)

        x = self.avg(c10)
        # x = x.view(x.size(0), -1)
        x = torch.flatten(x, start_dim=1)

        return x

def squeezenet(class_num=100):
    return SqueezeNet(class_num=class_num)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88

最大的变化就是在卷积层和relu激活层之间加了个bn层,包括所有的fire结构内。其余就是卷积和池化的kernel_size或stride的微调,包括最后去掉了dropout,以及最后部分的网络结构也稍作调整:
在这里插入图片描述
将这个网络结构与上一个的网络结构训练同一训练集,得到的模型测试同一测试集,发现这个模型的准确率会比上一个高几个点。而且上一个模型训练容易不稳定,训练到一半直接梯度爆炸了,需要不断调参也比较麻烦,这个模型lr直接0.1或0.01都能训练很好,所以个人更推荐这个网络模型。
下一篇编辑此网络结构的caffe版本

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/683243
推荐阅读
相关标签
  

闽ICP备14008679号