赞
踩
Nougat是一个名为Donut的模型,它经过训练,可以将PDF文档转录成Markdown格式文档。该模型由Swin Transformer作为视觉编码器,以及mBART模型作为文本解码器组成。
该模型被训练成在只给出PDF图像像素作为输入的情况下,自回归地预测Markdown格式。
https://huggingface.co/facebook/nougat-base
pip install nltk python-Levenshtein
pip install spaces
pip install git+https://github.com/facebookresearch/nougat
from huggingface_hub import hf_hub_download
import re
from PIL import Image
from pdf2image import convert_from_path
from transformers import NougatProcessor, VisionEncoderDecoderModel
from datasets import load_dataset
import torch
import os
processor = NougatProcessor.from_pretrained("/your/model/path/nougat-base")
model = VisionEncoderDecoderModel.from_pretrained("/your/model/path/nougat-base")
device = "cuda"
model.to(device)
# prepare PDF image for the model
pdf_file = 'your/pdf_data/path/xxx.pdf'
pages = convert_from_path(pdf_file, 300) # 300 是输出图片的 DPI(每英寸点数)
# 创建保存图片的目录
output_dir = os.path.join(os.path.dirname(pdf_file), 'images')
os.makedirs(output_dir, exist_ok=True)
for i, page in enumerate(pages):
image_path = os.path.join(output_dir, f'page_{i + 1}.jpg')
page.save(image_path, 'JPEG')
image = Image.open(image_path)
print("*"*30,f"第{i}页","*"*30)
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate transcription (here we only generate 30 tokens)
outputs = model.generate(
pixel_values.to(device),
min_length=1,
max_new_tokens=3000,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
)
sequences = processor.batch_decode(outputs, skip_special_tokens=True)
for sequence in sequences:
sequence = processor.post_process_generation(sequence, fix_markdown=False)
# note: we're using repr here such for the sake of printing the \n characters, feel free to just print the sequence
print(repr(sequence))
from huggingface_hub import hf_hub_download
import re
from PIL import Image
import requests
from nougat.dataset.rasterize import rasterize_paper
from transformers import NougatProcessor, VisionEncoderDecoderModel
import torch
import gradio as gr
import uuid
import os
import spaces
processor = NougatProcessor.from_pretrained("/your/model/path/nougat-base")
model = VisionEncoderDecoderModel.from_pretrained("/your/model/path/nougat-base")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def get_pdf(pdf_link):
unique_filename = f"{os.getcwd()}/downloaded_paper_{uuid.uuid4().hex}.pdf"
response = requests.get(pdf_link)
if response.status_code == 200:
with open(unique_filename, 'wb') as pdf_file:
pdf_file.write(response.content)
print("PDF downloaded successfully.")
else:
print("Failed to download the PDF.")
return unique_filename
@spaces.GPU
def predict(image):
#为模型准备PDF图像
image = Image.open(image)
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
min_length=1,
max_new_tokens=3000,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
)
page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
return page_sequence
def inference(pdf_file, pdf_link):
if pdf_file is None:
if pdf_link == '':
print("未上传任何文件,也未提供任何链接")
return "未提供任何数据。上传一个pdf文件或提供一个pdf链接,然后重试!"
else:
file_name = get_pdf(pdf_link)
else:
file_name = pdf_file.name
pdf_name = pdf_file.name.split('/')[-1].split('.')[0]
images = rasterize_paper(file_name, return_pil=True)
sequence = ""
# 推理每一页并合并
for image in images:
sequence += predict(image)
content = sequence.replace(r'\(', '$').replace(r'\)', '$').replace(r'\[', '$$').replace(r'\]', '$$')
with open(f"{os.getcwd()}/output.md","w+") as f:
f.write(content)
f.close()
return content, f"{os.getcwd()}/output.md"
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Nougat模型推理PDF转Markdown 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/688078
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。