赞
踩
参考链接:https://blog.csdn.net/u013733326/article/details/79847918
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils #第一部分,初始化
import reg_utils #第二部分,正则化
import gc_utils #第三部分,梯度校验
%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
我们在初始化之前,我们来看看我们的数据集是怎样的:
train_X, train_Y, test_X, test_Y = init_utils.load_dataset(is_plot=True)
我们将要建立一个分类器把蓝点和红点分开,在之前我们已经实现过一个3层的神经网络,我们将对它进行初始化:
我们将会尝试下面三种初始化方法:
模型的结构如下列代码展示:
def model(X,Y,learning_rate=0.01,num_iterations=15000,print_cost=True,initialization="he",is_polt=True): """ 实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID 参数: X - 输入的数据,维度为(2, 要训练/测试的数量) Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签) learning_rate - 学习速率 num_iterations - 迭代的次数 print_cost - 是否打印成本值,每迭代1000次打印一次 initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】 is_polt - 是否绘制梯度下降的曲线图 返回 parameters - 学习后的参数 """ grads = {} costs = [] m = X.shape[1] # 获取样本数目 layers_dims = [X.shape[0],10,5,1] #隐藏层的结点数目 #选择初始化参数的类型 if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) else : print("错误的初始化参数!程序退出") exit #开始学习 for i in range(0,num_iterations): #前向传播 a3 , cache = init_utils.forward_propagation(X,parameters) #计算成本 cost = init_utils.compute_loss(a3,Y) #反向传播 grads = init_utils.backward_propagation(X,Y,cache) #更新参数 parameters = init_utils.update_parameters(parameters,grads,learning_rate) #记录成本 if i % 1000 == 0: costs.append(cost) #打印成本 if print_cost: print("第" + str(i) + "次迭代,成本值为:" + str(cost)) #学习完毕,绘制成本曲线 if is_polt: plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() #返回学习完毕后的参数 return parameters
def initialize_parameters_zeros(layers_dims): """ 将模型的参数全部设置为0 参数: layers_dims - 列表,模型的层数和对应每一层的节点的数量 返回 parameters - 包含了所有W和b的字典 W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0]) b1 - 偏置向量,维度为(layers_dims[1],1) ··· WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1]) bL - 偏置向量,维度为(layers_dims[L],1) """ parameters = {} L = len(layers_dims) #网络层数 for l in range(1,L): # 将所有的参数都设置为0 parameters["W" + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1])) parameters["b" + str(l)] = np.zeros((layers_dims[l],1)) # 使用断言确保我的数据格式是正确的 assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1])) assert(parameters["b" + str(l)].shape == (layers_dims[l],1)) return parameters
测试一下:
parameters = initialize_parameters_zeros([3,2,1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[0. 0. 0.]
[0. 0. 0.]]
b1 = [[0.]
[0.]]
W2 = [[0. 0.]]
b2 = [[0.]]
将所有的权重初始化为0,查看训练结果。
parameters = model(train_X, train_Y, initialization = "zeros",is_polt=True)
第0次迭代,成本值为:0.6931471805599453
第1000次迭代,成本值为:0.6931471805599453
第2000次迭代,成本值为:0.6931471805599453
第3000次迭代,成本值为:0.6931471805599453
第4000次迭代,成本值为:0.6931471805599453
第5000次迭代,成本值为:0.6931471805599453
第6000次迭代,成本值为:0.6931471805599453
第7000次迭代,成本值为:0.6931471805599453
第8000次迭代,成本值为:0.6931471805599453
第9000次迭代,成本值为:0.6931471805599453
第10000次迭代,成本值为:0.6931471805599455
第11000次迭代,成本值为:0.6931471805599453
第12000次迭代,成本值为:0.6931471805599453
第13000次迭代,成本值为:0.6931471805599453
第14000次迭代,成本值为:0.6931471805599453
从上图中我们可以看到学习率一直没有变化,也就是说这个模型根本没有学习。我们来看看预测的结果怎么样:
print ("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print ("测试集:")
predictions_test = init_utils.predict(test_X, test_Y, parameters)
训练集:
Accuracy: 0.5
测试集:
Accuracy: 0.5
性能确实很差,而且成本并没有真正降低,算法的性能也比随机猜测要好。为什么?让我们看看预测和决策边界的细节:
print("predictions_train = " + str(predictions_train))
print("predictions_test = " + str(predictions_test))
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
predictions_train = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]]
predictions_test = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
分类失败,该模型预测每个都为0。通常来说,零初始化都会导致神经网络无法打破对称性,最终导致的结果就是无论网络有多少层,最终只能得到和Logistic函数相同的效果。
为了打破对称性,我们可以随机地把参数赋值。在随机初始化之后,每个神经元可以开始学习其输入的不同功能。
def initialize_parameters_random(layers_dims): """ 参数: layers_dims - 列表,模型的层数和对应每一层的节点的数量 返回 parameters - 包含了所有W和b的字典 W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0]) b1 - 偏置向量,维度为(layers_dims[1],1) ··· WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1]) b1 - 偏置向量,维度为(layers_dims[L],1) """ # 保证结果可以复现 np.random.seed(3) # 指定随机种子 parameters = {} L = len(layers_dims) # 层数 for l in range(1, L): # w随机初始化,b均初始化为0 parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 #使用10倍缩放 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) #使用断言确保我的数据格式是正确的 assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1])) assert(parameters["b" + str(l)].shape == (layers_dims[l],1)) return parameters
测试一下:
parameters = initialize_parameters_random([3, 2, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 17.88628473 4.36509851 0.96497468]
[-18.63492703 -2.77388203 -3.54758979]]
b1 = [[0.]
[0.]]
W2 = [[-0.82741481 -6.27000677]]
b2 = [[0.]]
查看训练结果。
parameters = model(train_X, train_Y, initialization = "random",is_polt=True)
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = init_utils.predict(test_X, test_Y, parameters)
print(predictions_train)
print(predictions_test)
第0次迭代,成本值为:inf 第1000次迭代,成本值为:0.6250982793959966 D:\workspace\Python\jupyter\DeepLearingAI\lecture1\lecture2\week1\init_utils.py:50: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) D:\workspace\Python\jupyter\DeepLearingAI\lecture1\lecture2\week1\init_utils.py:50: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) 第2000次迭代,成本值为:0.5981216596703697 第3000次迭代,成本值为:0.5638417572298645 第4000次迭代,成本值为:0.5501703049199763 第5000次迭代,成本值为:0.5444632909664456 第6000次迭代,成本值为:0.5374513807000807 第7000次迭代,成本值为:0.4764042074074983 第8000次迭代,成本值为:0.39781492295092263 第9000次迭代,成本值为:0.3934764028765484 第10000次迭代,成本值为:0.3920295461882659 第11000次迭代,成本值为:0.38924598135108 第12000次迭代,成本值为:0.3861547485712325 第13000次迭代,成本值为:0.384984728909703 第14000次迭代,成本值为:0.3827828308349524
训练集: Accuracy: 0.83 测试集: Accuracy: 0.86 [[1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0]] [[1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0]]
绘制出分类器图像,来查看分类结果。
plt.title("Model with large random initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
我们可以看到误差开始很高。这是因为由于具有较大的随机权重,最后一个激活(sigmoid)输出的结果非常接近于0或1,而当它出现错误时,它会导致非常高的损失。初始化参数如果没有很好地话会导致梯度消失、爆炸,这也会减慢优化算法。如果我们对这个网络进行更长时间的训练,我们将看到更好的结果,但是使用过大的随机数初始化会减慢优化的速度。
这是因为SIGMOID函数在w很大时,梯度很小导致了下降缓慢,从而减缓了学习速度。
总而言之,将权重初始化为非常大的时候其实效果并不好,下面我们试试小一点的参数值。
我们会使用到
2
上一层的维度
\sqrt{\frac{2}{\text{上一层的维度}}}
上一层的维度2
这个公式来初始化参数。
def initialize_parameters_he(layers_dims): """ 参数: layers_dims - 列表,模型的层数和对应每一层的节点的数量 返回 parameters - 包含了所有W和b的字典 W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0]) b1 - 偏置向量,维度为(layers_dims[1],1) ··· WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1]) b1 - 偏置向量,维度为(layers_dims[L],1) """ np.random.seed(3) # 指定随机种子 parameters = {} L = len(layers_dims) # 层数 for l in range(1, L): # 抑梯度异常初始化 parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) #使用断言确保我的数据格式是正确的 assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1])) assert(parameters["b" + str(l)].shape == (layers_dims[l],1)) return parameters
测试一下:
parameters = initialize_parameters_he([2, 4, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 1.78862847 0.43650985]
[ 0.09649747 -1.8634927 ]
[-0.2773882 -0.35475898]
[-0.08274148 -0.62700068]]
b1 = [[0.]
[0.]
[0.]
[0.]]
W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]]
b2 = [[0.]]
查看训练结果。
parameters = model(train_X, train_Y, initialization = "he",is_polt=True)
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.8830537463419761
第1000次迭代,成本值为:0.6879825919728063
第2000次迭代,成本值为:0.6751286264523371
第3000次迭代,成本值为:0.6526117768893807
第4000次迭代,成本值为:0.6082958970572937
第5000次迭代,成本值为:0.5304944491717495
第6000次迭代,成本值为:0.4138645817071793
第7000次迭代,成本值为:0.3117803464844441
第8000次迭代,成本值为:0.23696215330322556
第9000次迭代,成本值为:0.18597287209206828
第10000次迭代,成本值为:0.15015556280371808
第11000次迭代,成本值为:0.12325079292273548
第12000次迭代,成本值为:0.09917746546525937
第13000次迭代,成本值为:0.08457055954024274
第14000次迭代,成本值为:0.07357895962677366
训练集:
Accuracy: 0.9933333333333333
测试集:
Accuracy: 0.96
绘制出分类器图像,来查看分类结果。
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
抑梯度异常初始化的模型将蓝色和红色的点在少量的迭代中很好地分离出来。
总结一下:
在深度学习中,如果数据集没有足够大的话,可能会导致一些过拟合的问题。过拟合导致的结果就是在训练集上有着很高的精确度,但是在遇到新的样本时,精确度下降会很严重。为了避免过拟合的问题,接下来我们要讲解的方式就是正则化。
问题描述:假设你现在是一个AI专家,你需要设计一个模型,可以用于推荐在足球场中守门员将球发至哪个位置可以让本队的球员抢到球的可能性更大。说白了,实际上就是一个二分类,一半是己方抢到球,一半就是对方抢到球,我们来看一下这个图:
train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=True)
每一个点代表球落下的可能的位置,蓝色代表己方的球员会抢到球,红色代表对手的球员会抢到球,我们要做的就是使用模型来画出一条线,来找到适合我方球员能抢到球的位置。
我们要做以下三件事,来对比出不同的模型的优劣:
1.不使用正则化
2.使用正则化
2.1. 使用L2正则化
2.2. 使用随机节点删除
我们来看一下我们的模型:
def model(X,Y,learning_rate=0.3,num_iterations=30000,print_cost=True,is_plot=True,lambd=0,keep_prob=1): """ 实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID 参数: X - 输入的数据,维度为(2, 要训练/测试的数量) Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签) learning_rate - 学习速率 num_iterations - 迭代的次数 print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值 is_polt - 是否绘制梯度下降的曲线图 lambd - 正则化的超参数,实数 keep_prob - 随机删除节点的概率 返回 parameters - 学习后的参数 """ grads = {} # 梯度 costs = [] # 代价值 m = X.shape[1] # 获取样本数量 layers_dims = [X.shape[0],20,3,1] # 隐藏层单元数 # 随机初始化参数 parameters = reg_utils.initialize_parameters(layers_dims) #开始学习 for i in range(0,num_iterations): #前向传播 ##是否随机删除节点 if keep_prob == 1: ###不随机删除节点 a3 , cache = reg_utils.forward_propagation(X,parameters) elif keep_prob < 1: ###随机删除节点 a3 , cache = forward_propagation_with_dropout(X,parameters,keep_prob) else: print("keep_prob参数错误!程序退出。") exit #计算成本 ## 是否使用二范数 if lambd == 0: ###不使用L2正则化 cost = reg_utils.compute_cost(a3,Y) else: ###使用L2正则化 cost = compute_cost_with_regularization(a3,Y,parameters,lambd) #反向传播 ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。 assert(lambd == 0 or keep_prob ==1) ##两个参数的使用情况 if (lambd == 0 and keep_prob == 1): ### 不使用L2正则化和不使用随机删除节点 grads = reg_utils.backward_propagation(X,Y,cache) elif lambd != 0: ### 使用L2正则化,不使用随机删除节点 grads = backward_propagation_with_regularization(X, Y, cache, lambd) elif keep_prob < 1: ### 使用随机删除节点,不使用L2正则化 grads = backward_propagation_with_dropout(X, Y, cache, keep_prob) #更新参数 parameters = reg_utils.update_parameters(parameters, grads, learning_rate) #记录并打印成本 if i % 1000 == 0: ## 记录成本 costs.append(cost) if (print_cost and i % 10000 == 0): #打印成本 print("第" + str(i) + "次迭代,成本值为:" + str(cost)) #是否绘制成本曲线图 if is_plot: plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (x1,000)') plt.title("Learning rate =" + str(learning_rate)) plt.show() #返回学习后的参数 return parameters
parameters = model(train_X, train_Y,is_plot=True)
print("训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.6557412523481002
第10000次迭代,成本值为:0.16329987525724196
第20000次迭代,成本值为:0.13851642423253843
训练集:
Accuracy: 0.9478672985781991
测试集:
Accuracy: 0.915
绘制分割曲线
plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)
def compute_cost_with_regularization(A3,Y,parameters,lambd): """ 实现公式2的L2正则化计算成本 参数: A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量) Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量) parameters - 包含模型学习后的参数的字典 返回: cost - 使用公式2计算出来的正则化损失的值 """ m = Y.shape[1] # 样本数目 # 初始化神经网络 # 共三层神经网络 W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] # 计算代价值 cross_entropy_cost = reg_utils.compute_cost(A3,Y) # 计算正则项的代价值 L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m) # 计算总的代价值 cost = cross_entropy_cost + L2_regularization_cost return cost #当然,因为改变了成本函数,我们也必须改变向后传播的函数, 所有的梯度都必须根据这个新的成本值来计算。 def backward_propagation_with_regularization(X, Y, cache, lambd): """ 实现我们添加了L2正则化的模型的后向传播。 参数: X - 输入数据集,维度为(输入节点数量,数据集里面的数量) Y - 标签,维度为(输出节点数量,数据集里面的数量) cache - 来自forward_propagation()的cache输出 lambda - regularization超参数,实数 返回: gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典 """ # 获取样本数目 m = X.shape[1] # 参数初始化 (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y # 后向传播的时候也加入正则项 dW3 = (1 / m) * np.dot(dZ3,A2.T) + ((lambd * W3) / m ) db3 = (1 / m) * np.sum(dZ3,axis=1,keepdims=True) dA2 = np.dot(W3.T,dZ3) dZ2 = np.multiply(dA2,np.int64(A2 > 0)) dW2 = (1 / m) * np.dot(dZ2,A1.T) + ((lambd * W2) / m) db2 = (1 / m) * np.sum(dZ2,axis=1,keepdims=True) dA1 = np.dot(W2.T,dZ2) dZ1 = np.multiply(dA1,np.int64(A1 > 0)) dW1 = (1 / m) * np.dot(dZ1,X.T) + ((lambd * W1) / m) db1 = (1 / m) * np.sum(dZ1,axis=1,keepdims=True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients
测试一下:
parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)
print("使用正则化,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用正则化,测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.6974484493131264
第10000次迭代,成本值为:0.2684918873282239
第20000次迭代,成本值为:0.2680916337127301
使用正则化,训练集:
Accuracy: 0.9383886255924171
使用正则化,测试集:
Accuracy: 0.93
查看分类结果
plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)
λ的值是可以使用开发集调整时的超参数。L2正则化会使决策边界更加平滑。如果λ太大,也可能会“过度平滑”,从而导致模型高偏差。L2正则化实际上在做什么?L2正则化依赖于较小权重的模型比具有较大权重的模型更简单这样的假设,因此,通过削减成本函数中权重的平方值,可以将所有权重值逐渐改变到到较小的值。权值数值高的话会有更平滑的模型,其中输入变化时输出变化更慢,但是你需要花费更多的时间。L2正则化对以下内容有影响:
最后,我们使用Dropout来进行正则化,Dropout的原理就是每次迭代过程中随机将其中的一些节点失效。当我们关闭一些节点时,我们实际上修改了我们的模型。背后的想法是,在每次迭代时,我们都会训练一个只使用一部分神经元的不同模型。随着迭代次数的增加,我们的模型的节点会对其他特定节点的激活变得不那么敏感,因为其他节点可能在任何时候会失效。
在每一次迭代中,关闭(设置为零)一层的每个神经元,概率为1 - keep_prob,我们在这里保持概率为keep_prob(这里为50%)。丢弃的节点都不参与迭代时的前向和后向传播。
下面我们将关闭第一层和第三层的一些节点,我们需要做以下四步:
1.在视频中,吴恩达老师讲解了使用np.random.rand() 来初始化和a[1] 具有相同维度的d[1],在这里,我们将使用向量化实现,我们先来实现一个和A[1]相同的随机矩阵
D
[
1
]
=
[
d
1
d
1
…
d
1
]
D^{[1]} = [d^{1} d^{1} … d^{1}]
D[1]=[d1d1…d1]
。
2.如果
D
[
1
]
D^{[1]}
D[1]
低于 (keep_prob)的值我们就把它设置为0,如果高于(keep_prob)的值我们就设置为1。
3.把
A
[
1
]
A^{[1]}
A[1]
更新为
A
[
1
]
∗
D
[
1
]
A^{[1]} * D^{[1]}
A[1]∗D[1]
。 (我们已经关闭了一些节点)。我们可以使用
D
[
1
]
D^{[1]}
D[1]
作为掩码。我们做矩阵相乘的时候,关闭的那些节点(值为0)就会不参与计算,因为0乘以任何值都为0。
4.使用
A
[
1
]
A^{[1]}
A[1]
除以 keep_prob。这样做的话我们通过缩放就在计算成本的时候仍然具有相同的期望值,这叫做反向dropout。
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5): ''' 实现具有随机舍弃节点的前向传播。 LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID. 参数: X - 输入数据集,维度为(2,示例数) parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典: W1 - 权重矩阵,维度为(20,2) b1 - 偏向量,维度为(20,1) W2 - 权重矩阵,维度为(3,20) b2 - 偏向量,维度为(3,1) W3 - 权重矩阵,维度为(1,3) b3 - 偏向量,维度为(1,1) keep_prob - 随机删除的概率,实数 返回: A3 - 最后的激活值,维度为(1,1),正向传播的输出 cache - 存储了一些用于计算反向传播的数值的元组 ''' # 设置随机种子 np.random.seed(1) # 初始化参数 W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] # LINEAR -> RELU ->LINEAR->RELU->LINEAR->SIGMOID Z1 = np.dot(W1, X)+b1 A1 = reg_utils.relu(Z1) # 下面的步骤对应上述代码的1-4 # 1:初始化矩阵D1=np.random.rand() D1 = np.random.rand(A1.shape[0], A1.shape[1]) # 2:将D1的值转化为0或1(用keep_prob作为阈值) D1 = D1<keep_prob # 3:舍弃A1的一些节点(将它的值变为0或者False) A1 = A1*D1 # 4:缩放未舍弃的结点(不为0)的值 A1 = A1/keep_prob Z2 = np.dot(W2, A1)+b2 A2 = reg_utils.relu(Z2) D2 = np.random.rand(A2.shape[0], A2.shape[1]) # 2:将D1的值转化为0或1(用keep_prob作为阈值) D2 = D2<keep_prob # 3:舍弃A1的一些节点(将它的值变为0或者False) A2 = A2*D2 # 4:缩放未舍弃的结点(不为0)的值 A2 = A2/keep_prob Z3 = np.dot(W3, A2)+b3 A3 = reg_utils.sigmoid(Z3) cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache
更改后向传播的代码
def backward_propagation_with_dropout(X, Y, cache, keep_prob): ''' 实现我们随机删除的模型的后向传播。 参数: X - 输入数据集,维度为(2,示例数) Y - 标签,维度为(输出节点数量,示例数量) cache - 来自forward_propagation_with_dropout()的cache输出 keep_prob - 随机删除的概率,实数 返回: gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典 ''' # 样本数目 m = X.shape[1] (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache # 反向传播 dZ3 = A3-Y dW3 = (1/m)*np.dot(dZ3, A2.T) db3 = 1./m*np.sum(dZ3, axis=1, keepdims=True) dA2 = np.dot(W3.T, dZ3) # 使用正向传播期间相同的节点,舍弃那些关闭的结点 dA2 = dA2 * D2 # 缩放为舍弃的结点(不为0)的值 dA2 = dA2/keep_prob dZ2 = np.multiply(dA2, np.int64(A2>0)) dW2 = 1./m*np.dot(dZ2, A1.T) db2 = 1./m*np.sum(dZ2, axis=1, keepdims=True) dA1 = np.dot(W2.T, dZ2) # 使用正向传播相同的节点,舍弃那些关闭的结点 dA1 = dA1*D1 # 缩放未舍弃的节点(不为0)的值 dA1 = dA1/keep_prob dZ1 = np.multiply(dA1, np.int64(A1>0)) dW1 = 1./m*np.dot(dZ1, X.T) db1 = 1./m*np.sum(dZ1, axis=1, keepdims=True) gradients = { 'dZ3':dZ3, 'dW3':dW3, 'db3':db3, 'dA2':dA2, 'dZ2':dZ2, 'dW2':dW2, 'db2':db2, 'dA1':dA1, 'dZ1':dZ1, 'dW1':dW1, 'db1':db1 } return gradients
测试一下
parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)
print("使用随机删除节点,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用随机删除节点,测试集:")
reg_utils.predictions_test = reg_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.6543912405149825
D:\workspace\Python\jupyter\DeepLearingAI\lecture1\lecture2\week1\reg_utils.py:121: RuntimeWarning: divide by zero encountered in log
logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
D:\workspace\Python\jupyter\DeepLearingAI\lecture1\lecture2\week1\reg_utils.py:121: RuntimeWarning: invalid value encountered in multiply
logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
第10000次迭代,成本值为:0.061016986574905605
第20000次迭代,成本值为:0.060582435798513114
使用随机删除节点,训练集:
Accuracy: 0.9289099526066351
使用随机删除节点,测试集:
Accuracy: 0.95
查看分类情况
plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75, 0.40])
axes.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)
假设你现在是一个全球移动支付团队中的一员,现在需要建立一个深度学习模型去判断用户账户在进行付款的时候是否是被黑客入侵的。
但是,在我们执行反向传播的计算过程中,反向传播函数的计算过程是比较复杂的。为了验证我们得到的反向传播函数是否正确,现在你需要编写一些代码来验证反向传播函数的正确性。
我们先来看一下一维线性模型的梯度检查计算过程:
def forward_propagation(x, theta):
'''
实现图中呈现的线性前向传播(计算J)(J(theta)= theta * x)
参数:
x - 一个实值输入
theta - 参数,也是一个实数
返回:
J - 函数J的值,用公式J(theta)= theta * x计算
'''
J = np.dot(theta, x)
return J
测试一下
#测试forward_propagation
print("-----------------测试forward_propagation-----------------")
x, theta = 2, 4
J = forward_propagation(x, theta)
print ("J = " + str(J))
-----------------测试forward_propagation-----------------
J = 8
反向传播
def backward_propagation(x, theta):
'''
计算J相对于θ的导数。
参数:
x - 一个实值输入
theta - 参数,也是一个实数
返回:
dtheta - 相对于θ的成本梯度
'''
dtheta = x
return dtheta
测试一下
#测试backward_propagation
print("-----------------测试backward_propagation-----------------")
x, theta = 2, 4
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))
-----------------测试backward_propagation-----------------
dtheta = 2
梯度检查的步骤通过计算J(θ+)和J(θ-)然后计算误差,来判断我们的计算结果是否是正确的
def gradient_check(x, theta, epsilon=1e-7): ''' 实现图中的反向传播。 参数: x - 一个实值输入 theta - 参数,也是一个实数 epsilon - 使用公式(3)计算输入的微小偏移以计算近似梯度 返回: 近似梯度和后向传播梯度之间的差异 ''' thetaplus = theta + epsilon thetaminus = theta - epsilon J_plus = forward_propagation(x, thetaplus) J_minus = forward_propagation(x, thetaminus) gradapprox = (J_plus-J_minus)/(2*epsilon) # 检查gradapprox是否满足能够接近backward_propagation()的输出 grad = backward_propagation(x, theta) numerator = np.linalg.norm(grad-gradapprox) denominator = np.linalg.norm(grad)+np.linalg.norm(gradapprox) difference = numerator/denominator if difference<1e-7: print('梯度检查:梯度正常!') else: print('梯度检查:梯度超出阈值') return difference
测试一下
#测试gradient_check
print("-----------------测试gradient_check-----------------")
x, theta = 2, 4
difference = gradient_check(x, theta)
print("difference = " + str(difference))
-----------------测试gradient_check-----------------
梯度检查:梯度正常!
difference = 2.919335883291695e-10
高维参数是怎样计算的呢?我们看一下下图:
def foward_propagation_n(X, Y, parameters): ''' 实现图中的前向传播(并计算成本)。 参数: X - 训练集为m个例子 Y - m个示例的标签 parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典: W1 - 权重矩阵,维度为(5,4) b1 - 偏向量,维度为(5,1) W2 - 权重矩阵,维度为(3,5) b2 - 偏向量,维度为(3,1) W3 - 权重矩阵,维度为(1,3) b3 - 偏向量,维度为(1,1) 返回: cost - 成本函数(logistic) ''' m = X.shape[1] W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1,X) + b1 A1 = gc_utils.relu(Z1) Z2 = np.dot(W2,A1) + b2 A2 = gc_utils.relu(Z2) Z3 = np.dot(W3,A2) + b3 A3 = gc_utils.sigmoid(Z3) #计算成本 logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y) cost = (1 / m) * np.sum(logprobs) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return cost, cache def backward_propagation_n(X,Y,cache): """ 实现图中所示的反向传播。 参数: X - 输入数据点(输入节点数量,1) Y - 标签 cache - 来自forward_propagation_n()的cache输出 返回: gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。 """ m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = (1. / m) * np.dot(dZ3,A2.T) dW3 = 1. / m * np.dot(dZ3, A2.T) db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1. / m * np.dot(dZ2, A1.T) db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1. / m * np.dot(dZ1, X.T) #db1 = 4. / m * np.sum(dZ1, axis=1, keepdims=True) # Should not multiply by 4 db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients
高维可以对每一个参数都进行梯度检查
def gradient_check_n(parameters,gradients,X,Y,epsilon=1e-7): """ 检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度 参数: parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典 gradients - grad_output_propagation_n的输出包含与参数相关的成本梯度。 x - 输入数据点,维度为(输入节点数量,1) y - 标签 epsilon - 计算输入的微小偏移以计算近似梯度 返回: difference - 近似梯度和后向传播梯度之间的差异 """ #初始化参数 parameters_values , keys = gc_utils.dictionary_to_vector(parameters) #keys用不到 grad = gc_utils.gradients_to_vector(gradients) # 参数数量 num_parameters = parameters_values.shape[0] # 梯度检验参数初始化 J_plus = np.zeros((num_parameters,1)) J_minus = np.zeros((num_parameters,1)) gradapprox = np.zeros((num_parameters,1)) #计算gradapprox for i in range(num_parameters): #计算J_plus [i]。输入:“parameters_values,epsilon”。输出=“J_plus [i]” thetaplus = np.copy(parameters_values) # Step 1 thetaplus[i][0] = thetaplus[i][0] + epsilon # Step 2 J_plus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaplus)) # Step 3 ,cache用不到 #计算J_minus [i]。输入:“parameters_values,epsilon”。输出=“J_minus [i]”。 thetaminus = np.copy(parameters_values) # Step 1 thetaminus[i][0] = thetaminus[i][0] - epsilon # Step 2 J_minus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaminus))# Step 3 ,cache用不到 #计算gradapprox[i] gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon) #通过计算差异比较gradapprox和后向传播梯度。 numerator = np.linalg.norm(grad - gradapprox) # Step 1' denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step 2' difference = numerator / denominator # Step 3' if difference < 1e-7: print("梯度检查:梯度正常!") else: print("梯度检查:梯度超出阈值!") return difference
# -*- coding: utf-8 -*- #init_utils.py import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def relu(x): """ Compute the relu of x Arguments: x -- A scalar or numpy array of any size. Return: s -- relu(x) """ s = np.maximum(0,x) return s def compute_loss(a3, Y): """ Implement the loss function Arguments: a3 -- post-activation, output of forward propagation Y -- "true" labels vector, same shape as a3 Returns: loss - value of the loss function """ m = Y.shape[1] logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) loss = 1./m * np.nansum(logprobs) return loss def forward_propagation(X, parameters): """ Implements the forward propagation (and computes the loss) presented in Figure 2. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape () b1 -- bias vector of shape () W2 -- weight matrix of shape () b2 -- bias vector of shape () W3 -- weight matrix of shape () b3 -- bias vector of shape () Returns: loss -- the loss function (vanilla logistic loss) """ # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID z1 = np.dot(W1, X) + b1 a1 = relu(z1) z2 = np.dot(W2, a1) + b2 a2 = relu(z2) z3 = np.dot(W3, a2) + b3 a3 = sigmoid(z3) cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) return a3, cache def backward_propagation(X, Y, cache): """ Implement the backward propagation presented in figure 2. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat) cache -- cache output from forward_propagation() Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache dz3 = 1./m * (a3 - Y) dW3 = np.dot(dz3, a2.T) db3 = np.sum(dz3, axis=1, keepdims = True) da2 = np.dot(W3.T, dz3) dz2 = np.multiply(da2, np.int64(a2 > 0)) dW2 = np.dot(dz2, a1.T) db2 = np.sum(dz2, axis=1, keepdims = True) da1 = np.dot(W2.T, dz2) dz1 = np.multiply(da1, np.int64(a1 > 0)) dW1 = np.dot(dz1, X.T) db1 = np.sum(dz1, axis=1, keepdims = True) gradients = {"dz3": dz3, "dW3": dW3, "db3": db3, "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2, "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1} return gradients def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of n_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters['W' + str(i)] = ... parameters['b' + str(i)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for k in range(L): parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)] parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)] return parameters def predict(X, y, parameters): """ This function is used to predict the results of a n-layer neural network. Arguments: X -- data set of examples you would like to label parameters -- parameters of the trained model Returns: p -- predictions for the given dataset X """ m = X.shape[1] p = np.zeros((1,m), dtype = np.int) # Forward propagation a3, caches = forward_propagation(X, parameters) # convert probas to 0/1 predictions for i in range(0, a3.shape[1]): if a3[0,i] > 0.5: p[0,i] = 1 else: p[0,i] = 0 # print results print("Accuracy: " + str(np.mean((p[0,:] == y[0,:])))) return p def load_dataset(is_plot=True): np.random.seed(1) train_X, train_Y = sklearn.datasets.make_circles(n_samples=300, noise=.05) np.random.seed(2) test_X, test_Y = sklearn.datasets.make_circles(n_samples=100, noise=.05) # Visualize the data if is_plot: plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral); train_X = train_X.T train_Y = train_Y.reshape((1, train_Y.shape[0])) test_X = test_X.T test_Y = test_Y.reshape((1, test_Y.shape[0])) return train_X, train_Y, test_X, test_Y def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) plt.show() def predict_dec(parameters, X): """ Used for plotting decision boundary. Arguments: parameters -- python dictionary containing your parameters X -- input data of size (m, K) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Predict using forward propagation and a classification threshold of 0.5 a3, cache = forward_propagation(X, parameters) predictions = (a3>0.5) return predictions
# -*- coding: utf-8 -*- #reg_utils.py import numpy as np import matplotlib.pyplot as plt import scipy.io as sio def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def relu(x): """ Compute the relu of x Arguments: x -- A scalar or numpy array of any size. Return: s -- relu(x) """ s = np.maximum(0,x) return s def initialize_parameters(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) b1 -- bias vector of shape (layer_dims[l], 1) Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l]) bl -- bias vector of shape (1, layer_dims[l]) Tips: - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it! - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer. """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1]) assert(parameters['W' + str(l)].shape == layer_dims[l], 1) return parameters def forward_propagation(X, parameters): """ Implements the forward propagation (and computes the loss) presented in Figure 2. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape () b1 -- bias vector of shape () W2 -- weight matrix of shape () b2 -- bias vector of shape () W3 -- weight matrix of shape () b3 -- bias vector of shape () Returns: loss -- the loss function (vanilla logistic loss) """ # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID z1 = np.dot(W1, X) + b1 a1 = relu(z1) z2 = np.dot(W2, a1) + b2 a2 = relu(z2) z3 = np.dot(W3, a2) + b3 a3 = sigmoid(z3) cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) return a3, cache def compute_cost(a3, Y): """ Implement the cost function Arguments: a3 -- post-activation, output of forward propagation Y -- "true" labels vector, same shape as a3 Returns: cost - value of the cost function """ m = Y.shape[1] logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) cost = 1./m * np.nansum(logprobs) return cost def backward_propagation(X, Y, cache): """ Implement the backward propagation presented in figure 2. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat) cache -- cache output from forward_propagation() Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache dz3 = 1./m * (a3 - Y) dW3 = np.dot(dz3, a2.T) db3 = np.sum(dz3, axis=1, keepdims = True) da2 = np.dot(W3.T, dz3) dz2 = np.multiply(da2, np.int64(a2 > 0)) dW2 = np.dot(dz2, a1.T) db2 = np.sum(dz2, axis=1, keepdims = True) da1 = np.dot(W2.T, dz2) dz1 = np.multiply(da1, np.int64(a1 > 0)) dW1 = np.dot(dz1, X.T) db1 = np.sum(dz1, axis=1, keepdims = True) gradients = {"dz3": dz3, "dW3": dW3, "db3": db3, "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2, "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1} return gradients def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of n_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters['W' + str(i)] = ... parameters['b' + str(i)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for k in range(L): parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)] parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)] return parameters def load_2D_dataset(is_plot=True): data = sio.loadmat('datasets/data.mat') train_X = data['X'].T train_Y = data['y'].T test_X = data['Xval'].T test_Y = data['yval'].T if is_plot: plt.scatter(train_X[0, :], train_X[1, :], c=train_Y, s=40, cmap=plt.cm.Spectral); return train_X, train_Y, test_X, test_Y def predict(X, y, parameters): """ This function is used to predict the results of a n-layer neural network. Arguments: X -- data set of examples you would like to label parameters -- parameters of the trained model Returns: p -- predictions for the given dataset X """ m = X.shape[1] p = np.zeros((1,m), dtype = np.int) # Forward propagation a3, caches = forward_propagation(X, parameters) # convert probas to 0/1 predictions for i in range(0, a3.shape[1]): if a3[0,i] > 0.5: p[0,i] = 1 else: p[0,i] = 0 # print results print("Accuracy: " + str(np.mean((p[0,:] == y[0,:])))) return p def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) plt.show() def predict_dec(parameters, X): """ Used for plotting decision boundary. Arguments: parameters -- python dictionary containing your parameters X -- input data of size (m, K) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Predict using forward propagation and a classification threshold of 0.5 a3, cache = forward_propagation(X, parameters) predictions = (a3>0.5) return predictions
<>:63: SyntaxWarning: assertion is always true, perhaps remove parentheses?
<>:64: SyntaxWarning: assertion is always true, perhaps remove parentheses?
<>:63: SyntaxWarning: assertion is always true, perhaps remove parentheses?
<>:64: SyntaxWarning: assertion is always true, perhaps remove parentheses?
<>:63: SyntaxWarning: assertion is always true, perhaps remove parentheses?
<>:64: SyntaxWarning: assertion is always true, perhaps remove parentheses?
<ipython-input-48-93eaf45c3d38>:63: SyntaxWarning: assertion is always true, perhaps remove parentheses?
assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
<ipython-input-48-93eaf45c3d38>:64: SyntaxWarning: assertion is always true, perhaps remove parentheses?
assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
# -*- coding: utf-8 -*- #gc_utils.py import numpy as np import matplotlib.pyplot as plt def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def relu(x): """ Compute the relu of x Arguments: x -- A scalar or numpy array of any size. Return: s -- relu(x) """ s = np.maximum(0,x) return s def dictionary_to_vector(parameters): """ Roll all our parameters dictionary into a single vector satisfying our specific required shape. """ keys = [] count = 0 for key in ["W1", "b1", "W2", "b2", "W3", "b3"]: # flatten parameter new_vector = np.reshape(parameters[key], (-1,1)) keys = keys + [key]*new_vector.shape[0] if count == 0: theta = new_vector else: theta = np.concatenate((theta, new_vector), axis=0) count = count + 1 return theta, keys def vector_to_dictionary(theta): """ Unroll all our parameters dictionary from a single vector satisfying our specific required shape. """ parameters = {} parameters["W1"] = theta[:20].reshape((5,4)) parameters["b1"] = theta[20:25].reshape((5,1)) parameters["W2"] = theta[25:40].reshape((3,5)) parameters["b2"] = theta[40:43].reshape((3,1)) parameters["W3"] = theta[43:46].reshape((1,3)) parameters["b3"] = theta[46:47].reshape((1,1)) return parameters def gradients_to_vector(gradients): """ Roll all our gradients dictionary into a single vector satisfying our specific required shape. """ count = 0 for key in ["dW1", "db1", "dW2", "db2", "dW3", "db3"]: # flatten parameter new_vector = np.reshape(gradients[key], (-1,1)) if count == 0: theta = new_vector else: theta = np.concatenate((theta, new_vector), axis=0) count = count + 1 return theta
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。