赞
踩
OpenCV 是一个用于计算机视觉应用程序的库。在 OpenCV 的帮助下,我们可以构建大量实时运行更好的应用程序。主要用于图像和视频处理。
可以在此处获取有关 OpenCV 的更多信息 (https://opencv.org/)
除了 OpenCV,我们将使用 MediaPipe 库。
MediaPipe是一个主要用于构建音频、视频或任何时间序列数据的框架。在 MediaPipe 框架的帮助下,我们可以为不同的媒体处理功能构建管道。
MediaPipe 的一些主要应用。
多手追踪
人脸检测
对象检测和跟踪
Objection:3D 对象检测和跟踪
AutoFlip:自动视频裁剪管道等。
MediaPipe 使用单次手掌检测模型,一旦完成,它会对检测到的手部区域中的 21 个 3D 手掌坐标执行精确的关键点定位。
MediaPipe 管道使用多个模型,例如,从完整图像返回定向手边界框的手掌检测模型。裁剪后的图像区域被馈送到由手掌检测器定义的手部标志模型,并返回高保真 3D 手部关键点。
现在让我们实现手部跟踪模型。
安装所需的模块
–> pip install opencv-python
–> pip install mediapipe
注意:这里的python版本尽量在3.8以上,不然会报各种错误!!
首先,让我们检查网络摄像头的工作情况。
- import cv2
- import mediapipe as mp
- import time
-
- cap = cv2.VideoCapture(0)
-
- mpHands = mp.solutions.hands
- hands = mpHands.Hands(static_image_mode=False,
- max_num_hands=2,
- min_detection_confidence=0.5,
- min_tracking_confidence=0.5)
- mpDraw = mp.solutions.drawing_utils
-
- pTime = 0
- cTime = 0
-
- while True:
- success, img = cap.read()
- img = cv2.flip(img, 1)
- imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- results = hands.process(imgRGB)
- #print(results.multi_hand_landmarks)
-
- if results.multi_hand_landmarks:
- for handLms in results.multi_hand_landmarks:
- for id, lm in enumerate(handLms.landmark):
- #print(id,lm)
- h, w, c = img.shape
- cx, cy = int(lm.x *w), int(lm.y*h)
- #if id ==0:
- cv2.circle(img, (cx,cy), 3, (255,0,255), cv2.FILLED)
-
- mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
-
-
- cTime = time.time()
- fps = 1/(cTime-pTime)
- pTime = cTime
-
- cv2.putText(img,str(int(fps)), (10,70), cv2.FONT_HERSHEY_PLAIN, 3, (255,0,255), 3)
-
- cv2.imshow("Image", img)
- cv2.waitKey(1)
结果见图示:
效果如示:
源码如下:
- """
- 功能:手势虚拟拖拽
- 1、使用OpenCV读取摄像头视频流;
- 2、识别手掌关键点像素坐标;
- 3、根据食指和中指指尖的坐标,利用勾股定理计算距离,当距离较小且都落在矩形内,则触发拖拽(矩形变色);
- 4、矩形跟着手指动;
- 5、两指放开,则矩形停止移动
- """
-
-
- # 导入OpenCV
- import cv2
- # 导入mediapipe
- import mediapipe as mp
-
- # 导入其他依赖包
- import time
- import math
-
-
-
- # 方块管理类
- class SquareManager:
- def __init__(self, rect_width):
-
-
- # 方框长度
- self.rect_width = rect_width
-
- # 方块list
- self.square_count = 0
- self.rect_left_x_list = []
- self.rect_left_y_list = []
- self.alpha_list = []
-
- # 中指与矩形左上角点的距离
- self.L1 = 0
- self.L2 = 0
-
- # 激活移动模式
- self.drag_active = False
-
- # 激活的方块ID
- self.active_index = -1
-
-
- # 创建一个方块,但是没有显示
- def create(self,rect_left_x,rect_left_y,alpha=0.4):
- self.rect_left_x_list.append(rect_left_x)
- self.rect_left_y_list.append(rect_left_y)
- self.alpha_list.append(alpha)
- self.square_count+=1
-
-
- # 更新位置
- def display(self,class_obj):
- for i in range(0,self.square_count):
- x= self.rect_left_x_list[i]
- y= self.rect_left_y_list[i]
- alpha = self.alpha_list[i]
-
- overlay = class_obj.image.copy()
-
- if(i == self.active_index):
- cv2.rectangle(overlay,(x,y),(x+self.rect_width,y+self.rect_width),(255, 0, 255),-1)
- else:
- cv2.rectangle(overlay,(x,y),(x+self.rect_width,y+self.rect_width),(255, 0, 0),-1)
-
- # Following line overlays transparent rectangle over the self.image
- class_obj.image = cv2.addWeighted(overlay, alpha, class_obj.image, 1 - alpha, 0)
-
-
-
- # 判断落在哪个方块上,返回方块的ID
- def checkOverlay(self,check_x,check_y):
- for i in range(0,self.square_count):
- x= self.rect_left_x_list[i]
- y= self.rect_left_y_list[i]
-
- if (x < check_x < (x+self.rect_width) ) and ( y < check_y < (y+self.rect_width)):
-
- # 保存被激活的方块ID
- self.active_index = i
-
- return i
-
- return -1
-
- # 计算与指尖的距离
- def setLen(self,check_x,check_y):
- # 计算距离
- self.L1 = check_x - self.rect_left_x_list[self.active_index]
- self.L2 = check_y - self.rect_left_y_list[self.active_index]
-
- # 更新方块
- def updateSquare(self,new_x,new_y):
- # print(self.rect_left_x_list[self.active_index])
- self.rect_left_x_list[self.active_index] = new_x - self.L1
- self.rect_left_y_list[self.active_index] = new_y - self.L2
-
-
- # 识别控制类
- class HandControlVolume:
- def __init__(self):
- # 初始化medialpipe
- self.mp_drawing = mp.solutions.drawing_utils
- self.mp_drawing_styles = mp.solutions.drawing_styles
- self.mp_hands = mp.solutions.hands
-
-
- # 中指与矩形左上角点的距离
- self.L1 = 0
- self.L2 = 0
-
- # image实例,以便另一个类调用
- self.image=None
-
-
-
- # 主函数
- def recognize(self):
- # 计算刷新率
- fpsTime = time.time()
-
- # OpenCV读取视频流
- cap = cv2.VideoCapture(0)
- # 视频分辨率
- resize_w = 1280
- resize_h = 720
-
- # 画面显示初始化参数
- rect_percent_text = 0
-
-
- # 初始化方块管理器
- squareManager = SquareManager(150)
-
- # 创建多个方块
- for i in range(0, 7):
- squareManager.create(180*i+20, 180, 0.3) ##原来是0.6
-
-
- with self.mp_hands.Hands(min_detection_confidence=0.7,
- min_tracking_confidence=0.5,
- max_num_hands=2) as hands:
- while cap.isOpened():
-
- # 初始化矩形
- success, self.image = cap.read()
- self.image = cv2.resize(self.image, (resize_w, resize_h))
-
- if not success:
- print("空帧.")
- continue
-
- # 提高性能
- self.image.flags.writeable = False
- # 转为RGB
- self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
- # 镜像
- self.image = cv2.flip(self.image, 1)
- # mediapipe模型处理
- results = hands.process(self.image)
-
- self.image.flags.writeable = True
- self.image = cv2.cvtColor(self.image, cv2.COLOR_RGB2BGR)
- # 判断是否有手掌
- if results.multi_hand_landmarks:
- # 遍历每个手掌
- for hand_landmarks in results.multi_hand_landmarks:
- # 在画面标注手指
- self.mp_drawing.draw_landmarks(
- self.image,
- hand_landmarks,
- self.mp_hands.HAND_CONNECTIONS,
- self.mp_drawing_styles.get_default_hand_landmarks_style(),
- self.mp_drawing_styles.get_default_hand_connections_style())
-
-
- # 解析手指,存入各个手指坐标
- landmark_list = []
-
- # 用来存储手掌范围的矩形坐标
- paw_x_list = []
- paw_y_list = []
- for landmark_id, finger_axis in enumerate(
- hand_landmarks.landmark):
- landmark_list.append([
- landmark_id, finger_axis.x, finger_axis.y,
- finger_axis.z
- ])
- paw_x_list.append(finger_axis.x)
- paw_y_list.append(finger_axis.y)
- if landmark_list:
- # 比例缩放到像素
- ratio_x_to_pixel = lambda x: math.ceil(x * resize_w)
- ratio_y_to_pixel = lambda y: math.ceil(y * resize_h)
-
- # 设计手掌左上角、右下角坐标
- paw_left_top_x,paw_right_bottom_x = map(ratio_x_to_pixel,[min(paw_x_list),max(paw_x_list)])
- paw_left_top_y,paw_right_bottom_y = map(ratio_y_to_pixel,[min(paw_y_list),max(paw_y_list)])
-
- # 给手掌画框框
- cv2.rectangle(self.image,(paw_left_top_x-30,paw_left_top_y-30),(paw_right_bottom_x+30,paw_right_bottom_y+30),(0, 255,0),2)
-
- # 获取中指指尖坐标
- middle_finger_tip = landmark_list[12]
- middle_finger_tip_x =ratio_x_to_pixel(middle_finger_tip[1])
- middle_finger_tip_y =ratio_y_to_pixel(middle_finger_tip[2])
-
- # 获取食指指尖坐标
- index_finger_tip = landmark_list[8]
- index_finger_tip_x =ratio_x_to_pixel(index_finger_tip[1])
- index_finger_tip_y =ratio_y_to_pixel(index_finger_tip[2])
- # 中间点
- between_finger_tip = (middle_finger_tip_x+index_finger_tip_x)//2, (middle_finger_tip_y+index_finger_tip_y)//2
- # print(middle_finger_tip_x)
- thumb_finger_point = (middle_finger_tip_x,middle_finger_tip_y)
- index_finger_point = (index_finger_tip_x,index_finger_tip_y)
- # 画指尖2点
- circle_func = lambda point: cv2.circle(self.image,point,10,(255,0,255),-1)
- self.image = circle_func(thumb_finger_point)
- self.image = circle_func(index_finger_point)
- self.image = circle_func(between_finger_tip)
- # 画2点连线
- self.image = cv2.line(self.image,thumb_finger_point,index_finger_point,(255,0,255),5)
- # 勾股定理计算长度
- line_len = math.hypot((index_finger_tip_x-middle_finger_tip_x),(index_finger_tip_y-middle_finger_tip_y))
- # 将指尖距离映射到文字
- rect_percent_text = math.ceil(line_len)
-
- # 激活模式,需要让矩形跟随移动
- if squareManager.drag_active:
- # 更新方块
- squareManager.updateSquare(between_finger_tip[0],between_finger_tip[1])
- if(line_len>100):
- # 取消激活
- squareManager.drag_active =False
- squareManager.active_index = -1
-
- elif (line_len<100) and (squareManager.checkOverlay(between_finger_tip[0],between_finger_tip[1]) != -1 )and( squareManager.drag_active == False):
- # 激活
- squareManager.drag_active =True
- # 计算距离
- squareManager.setLen(between_finger_tip[0],between_finger_tip[1])
-
- # 显示方块,传入本实例,主要为了半透明的处理
- squareManager.display(self)
-
- # 显示距离
- cv2.putText(self.image, "Distance:"+str(rect_percent_text), (10, 120),cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
-
- # 显示当前激活
- cv2.putText(self.image, "Active:"+( "None" if squareManager.active_index == -1 else str(squareManager.active_index)), (10, 170),cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
-
- # 显示刷新率FPS
- cTime = time.time()
- fps_text = 1/(cTime-fpsTime)
- fpsTime = cTime
- cv2.putText(self.image, "FPS: " + str(int(fps_text)), (10, 70),
- cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
- # 显示画面
- # self.image = cv2.resize(self.image, (resize_w//2, resize_h//2))
- cv2.imshow('virtual drag and drop', self.image)
-
- if cv2.waitKey(5) & 0xFF == 27:
- break
- cap.release()
-
-
-
- # 开始程序
- control = HandControlVolume()
- control.recognize()
-
-
效果如示:
源码如下:
- """
- 功能:手势操作电脑音量
- 1、使用OpenCV读取摄像头视频流;
- 2、识别手掌关键点像素坐标;
- 3、根据拇指和食指指尖的坐标,利用勾股定理计算距离;
- 4、将距离等比例转为音量大小,控制电脑音量
- """
-
-
- # 导入OpenCV
- import cv2
- # 导入mediapipe
- import mediapipe as mp
- # 导入电脑音量控制模块
- from ctypes import cast, POINTER
- from comtypes import CLSCTX_ALL
- from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
-
- # 导入其他依赖包
- import time
- import math
- import numpy as np
-
- class HandControlVolume:
- def __init__(self):
- # 初始化medialpipe
- self.mp_drawing = mp.solutions.drawing_utils
- self.mp_drawing_styles = mp.solutions.drawing_styles
- self.mp_hands = mp.solutions.hands
-
- # 获取电脑音量范围
- devices = AudioUtilities.GetSpeakers()
- interface = devices.Activate(
- IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
- self.volume = cast(interface, POINTER(IAudioEndpointVolume))
- self.volume_range = self.volume.GetVolumeRange()
-
- # 主函数
- def recognize(self):
- # 计算刷新率
- fpsTime = time.time()
-
- # OpenCV读取视频流
- cap = cv2.VideoCapture(0)
- # 视频分辨率
- resize_w = 640
- resize_h = 480
-
- # 画面显示初始化参数
- rect_height = 0
- rect_percent_text = 0
-
- with self.mp_hands.Hands(min_detection_confidence=0.7,
- min_tracking_confidence=0.5,
- max_num_hands=2) as hands:
- while cap.isOpened():
- success, image = cap.read()
- image = cv2.resize(image, (resize_w, resize_h))
-
- if not success:
- print("空帧.")
- continue
-
- # 提高性能
- image.flags.writeable = False
- # 转为RGB
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- # 镜像
- image = cv2.flip(image, 1)
- # mediapipe模型处理
- results = hands.process(image)
-
- image.flags.writeable = True
- image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
- # 判断是否有手掌
- if results.multi_hand_landmarks:
- # 遍历每个手掌
- for hand_landmarks in results.multi_hand_landmarks:
- # 在画面标注手指
- self.mp_drawing.draw_landmarks(
- image,
- hand_landmarks,
- self.mp_hands.HAND_CONNECTIONS,
- self.mp_drawing_styles.get_default_hand_landmarks_style(),
- self.mp_drawing_styles.get_default_hand_connections_style())
-
- # 解析手指,存入各个手指坐标
- landmark_list = []
- for landmark_id, finger_axis in enumerate(
- hand_landmarks.landmark):
- landmark_list.append([
- landmark_id, finger_axis.x, finger_axis.y,
- finger_axis.z
- ])
- if landmark_list:
- # 获取大拇指指尖坐标
- thumb_finger_tip = landmark_list[4]
- thumb_finger_tip_x = math.ceil(thumb_finger_tip[1] * resize_w)
- thumb_finger_tip_y = math.ceil(thumb_finger_tip[2] * resize_h)
- # 获取食指指尖坐标
- index_finger_tip = landmark_list[8]
- index_finger_tip_x = math.ceil(index_finger_tip[1] * resize_w)
- index_finger_tip_y = math.ceil(index_finger_tip[2] * resize_h)
- # 中间点
- finger_middle_point = (thumb_finger_tip_x+index_finger_tip_x)//2, (thumb_finger_tip_y+index_finger_tip_y)//2
- # print(thumb_finger_tip_x)
- thumb_finger_point = (thumb_finger_tip_x,thumb_finger_tip_y)
- index_finger_point = (index_finger_tip_x,index_finger_tip_y)
- # 画指尖2点
- image = cv2.circle(image,thumb_finger_point,10,(255,0,255),-1)
- image = cv2.circle(image,index_finger_point,10,(255,0,255),-1)
- image = cv2.circle(image,finger_middle_point,10,(255,0,255),-1)
- # 画2点连线
- image = cv2.line(image,thumb_finger_point,index_finger_point,(255,0,255),5)
- # 勾股定理计算长度
- line_len = math.hypot((index_finger_tip_x-thumb_finger_tip_x),(index_finger_tip_y-thumb_finger_tip_y))
-
- # 获取电脑最大最小音量
- min_volume = self.volume_range[0]
- max_volume = self.volume_range[1]
- # 将指尖长度映射到音量上
- vol = np.interp(line_len,[50,300],[min_volume,max_volume])
- # 将指尖长度映射到矩形显示上
- rect_height = np.interp(line_len,[50,300],[0,200])
- rect_percent_text = np.interp(line_len,[50,300],[0,100])
-
- # 设置电脑音量
- self.volume.SetMasterVolumeLevel(vol, None)
-
- # 显示矩形
- cv2.putText(image, str(math.ceil(rect_percent_text))+"%", (10, 350),
- cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
- image = cv2.rectangle(image,(30,100),(70,300),(255, 0, 0),3)
- image = cv2.rectangle(image,(30,math.ceil(300-rect_height)),(70,300),(255, 0, 0),-1)
-
- # 显示刷新率FPS
- cTime = time.time()
- fps_text = 1/(cTime-fpsTime)
- fpsTime = cTime
- cv2.putText(image, "FPS: " + str(int(fps_text)), (10, 70),
- cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
- # 显示画面
- cv2.imshow('MediaPipe Hands', image)
- if cv2.waitKey(5) & 0xFF == 27:
- break
- cap.release()
-
- # 开始程序
- control = HandControlVolume()
- control.recognize()
-
reference:
使用 Python+OpenCV 构建手部跟踪系统 - 知乎 (zhihu.com)
源码来源:恩培大佬
enpeizhao/CVprojects: computer vision projects | 计算机视觉等好玩的AI项目 (github.com)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。