赞
踩
目录
摘要
量子计算具备可能超越经典计算的潜在能力,近年来在技术研究、应用探索及产业生态培育等方面取得诸多进展,整体发展进入快车道,已成为全球多国科研布局与投资热点。重点梳理分析量子计算关键技术研究进展、应用探索开展态势和产业生态培育等,并对未来发展趋势进行展望。
关键词: 量子计算; 技术研究; 应用探索; 产业现状
随着人类对于量子力学原理的认识、理解和研究不断深入,以及对于微观物理体系的观测和调控能力不断提升,以微观粒子系统为操控对象,借助其中的量子叠加、量子纠缠等量子物理现象进行信息获取、处理和传输的量子信息技术应运而生并蓬勃发展。量子信息技术主要包含量子计算、量子通信和量子测量三大领域[1],有望在提升运算处理速度、信息安全保障能力、测量精度和灵敏度等方面突破经典计算瓶颈。量子信息技术已经成为信息通信技术演进和产业升级的关注焦点之一,在未来国家科技发展、新兴产业培育、国防和经济建设等领域,将产生基础共性乃至颠覆性重大影响。量子计算是遵循量子力学规律进行信息处理的新型计算范式,以量子比特为基本单元,具有为某些计算困难问题提供加速的能力,是未来算力跨越式发展的重要方向之一,有望满足量子模拟、量化金融、组合优化、人工智能等领域日渐增长的算力需求。
近年来,全球多个国家与地区持续加强量子计算领域的规划布局,不断投入资金支持。量子计算领域热度不断升高,科研创新活跃,超导和光量子路线实现量子计算优越性试验验证[2⇓⇓-5],实用化应用探索多方展开,产业生态逐步构建,全方位多元化的发展格局正在形成。本文重点梳理分析量子计算最新研究进展、应用探索开展态势和产业生态培育等,并对量子计算未来发展趋势进行展望。
量子计算历经数十年发展,多方面研究与探索同步开展,逐渐形成集理论研究、样机研制、应用探索和产业培育为一体的体系化发展格局。近年来,量子计算在技术研究、样机研制、软件开发、算法研究等方面取得诸多进展,重要成果层出不穷,而技术路线选择是样机研制中的重中之重。量子硬件通过制备、操作和测量量子比特,并基于单比特叠加和多比特纠缠的耦合与状态演化实现高效并行计算模拟等功能,是量子计算样机研发攻关亟待突破的问题。超导、离子阱、光量子、硅基量子点和超冷原子等技术路线处于并行发展和开放竞争状态,尚未呈现融合收敛趋势,近年亮点进展颇多,竞争较为激烈。此外,金刚石氮-空位(NV)色心路线、拓扑路线等也取得进展,目前仍处于基础研究阶段,未来发展值得期待。下面对主流技术路线进行总结和分析。
超导技术路线是发展相对迅速的一种路线,核心器件为二能级系统超导约瑟夫森结,已衍生出Transmon、Xmon、Fluxonium等多种新型超导量子比特,具有可设计、可扩展、易控制、易耦合等优势。近年来,超导技术路线在量子比特数量和保真度方面均有一定突破。2022年,Rigetti推出80量子比特Aspen-M系统,IBM发布 433量子比特芯片Osprey[6]。美国劳伦斯伯克利国家实验室在超导量子信息处理器中进行三量子比特高保真iToffoli本机门首次试验演示,保真度达98.26%,阿里巴巴在新型Fluxonium系统中实现99.72%的双比特门操控精度[7]。
超导技术路线主要瓶颈在于极低温制冷环境带来的工程挑战,需要新颖和高度集成化的测控系统支持大规模量子比特操控,以及结合材料科学等提高相干寿命和保真度等。超导技术路线是实现通用量子计算有力竞争者之一,已获得诸多科研机构、科技企业和初创公司支持,比特数量稳步提升,每秒电路层操作数等指标占优。
离子阱技术路线是另一种受关注程度较高的路线,基本原理是利用电荷与磁场间的交互作用力形成势阱,从而操控带电粒子构建二能级量子比特,具有无需极低温冷却、量子比特物理全同、相干时间长等优势。近年离子阱技术路线研究进展主要体现在保真度提升和全连接比特数增长等方面。2022年,Quantinuum提升Model H1系统量子体积至8 192[8]。IonQ离子阱量子处理器保真度达99.96%,并推出32 Qubit离子阱量子计算机IonQ Forte。2023年,Quantinuum的H1-1系统量子体积提升至32 768[9]。华翊博奥(北京)量子科技有限公司(简称“华翊量子”)推出37 Qubit离子阱量子计算原型机。
离子阱技术路线主要瓶颈挑战在于离子囚禁时间有限,捕获离子的状态制备时间和量子门操作时间较长,单比特多路激光读写需求和线性阱尺度规模制约比特数扩展等。离子阱技术路线是通用量子计算另一个有力竞争者,未来样机研发在真空、激光、微波和电子学等多个工程领域需持续攻关。
光量子技术路线原理是利用光子的多种自由度(例如偏振、相位和时间位置等)进行量子态编码和量子位构建。主要优势在于,与周围环境相互作用弱、可常温工作、相干时间长、保真度较高。近年光量子路线科研进展主要是量子优越性证明、光子纠缠操控试验等。2022年,Xanadu[5]在光量子计算机Borealis上完成216 光子高斯玻色采样试验。德国马克斯普朗克量子光学研究所展示双光子CNOT门并实现14 光子纠缠操控[10]。
光量子技术路线主要瓶颈挑战在于不同光子态之间构建双量子比特门和实现逻辑操作,以及高品质光源与光子探测性能待提升等。未来基于集成光学芯片的光量子计算方案或将成为发展演进的重要方向。
硅基量子点技术路线的基本原理是在硅或砷化镓等半导体材料制备门控量子点来编码量子比特。优势在于,可扩展性好、门操作速度快、与成熟集成电路工艺相兼容。近年亮点成果在于量子比特数量和保真度的提升。2022年,《自然》杂志发表三种不同实现方案的硅基量子处理器双量子比特门保真度达到99%以上[11]。另外,Intel实现12位硅自旋量子比特[12]。
硅基量子点技术路线主要瓶颈挑战在于噪声影响明显,保真度较低,需要提纯材料以延长相干寿命,量子位间存在干扰与串扰等。由于硅基量子点技术路线与经典电子学可兼容,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。