赞
踩
利用【Python+Tensorflow】搭建ResNet,实现对Cifar10数据集的分类
具体数据集介绍及下载地址:https://blog.csdn.net/weixin_44402973/article/details/96028312
2015年微软亚洲研究院何凯明团队提出了ResNet,在网络结构上使用了跳连来防止梯度消失,一定程度上加深网络层数。引入跳连,可以一定程度也解决网络深度加深,网络难优化问题。
假设有一个比较浅的网络达到了饱和的准确率,那么后面再加上几个y=x的全等映射层,起码误差不会增加,即更深的网络不应该带来训练集上误差上升。而这里提到的使用全等映射直接将前一层输出传到后面的思想,就是ResNet的灵感来源。假定某段神经网络的输入是x,期望输出是H(x),如果我们直接把输入x传到输出作为初始结果,那么此时我们需要学习的目标就是F(x) = H(x) - x。如图所示,这就是一个ResNet的残差学习单元(Residual Unit),ResNet相当于将学习目标改变了,不再是学习一个完整的输出H(x),只是输出和输入的差别H(x)-x,即残差,如图1。
图1. Shortcut Connection
图2. 残差结构
由上图可知,实现残差块【上述残差结构】,可以使用上面两种结构:building block(左)和bottleneck block(右)。
A bottleneck building block提出为了目的是为了降低参数的数目,第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积进行恢复,整体上用的参数数目:1*1*256*64+3*3*64*64+1*1*64*256 = 69632,如果不使用bottleneck结构的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,两者之间参数量相差了将近17倍。
A “bottleneck building” block提出为了目的是为了降低计算量,考虑两种结构的输入和输出feature map大小为M*N相等,使用bottleneck结构计算量为:M*N*1*1*256*64+M*N*3*3*64*64+M*N*1*1*64*256=69632*M*N;使用building block结构计算量为:M*N*3*3*256*256*2=1179648*M*N,可以得出使用“building block”计算量大致减少了16.94倍。
图3.网络结构图
1.文件组织形式:
2.本次代码文件res_net.py中实现了building block结构残差卷积网络:
- # coding: utf-8
-
- import tensorflow as tf
- import os
- import pickle
- import numpy as np
-
-
- CIFAR_DIR = "./cifar-10-batches-py"
- print(os.listdir(CIFAR_DIR))
-
-
-
- def load_data(filename):
- """read data from data file."""
- with open(filename, 'rb') as f:
- data = pickle.load(f, encoding='latin1')
- return data['data'], data['labels']
-
- class CifarData:
- def __init__(self, filenames, need_shuffle):
- all_data = []
- all_labels = []
- for filename in filenames:
- data, labels = load_data(filename)
- all_data.append(data)
- all_labels.append(labels)
- self._data = np.vstack(all_data)
- self._data = self._data / 127.5 - 1
- self._labels = np.hstack(all_labels)
- print(self._data.shape)
- print(self._labels.shape)
-
- self._num_examples = self._data.shape[0]
- self._need_shuffle = need_shuffle
- self._indicator = 0
- if self._need_shuffle:
- self._shuffle_data()
-
- def _shuffle_data(self):
- # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
- p = np.random.permutation(self._num_examples)
- self._data = self._data[p]
- self._labels = self._labels[p]
-
- def size(self):
- """获取数据总量"""
- return self._num_examples
-
- def next_batch(self, batch_size):
- """return batch_size examples as a batch."""
-
- if batch_size > self._num_examples:
- raise Exception("batch size is larger than all examples")
-
- end_indicator = self._indicator + batch_size
- if self._indicator < self._num_examples-1 and end_indicator >self._num_examples:
- end_indicator = self._num_examples
- elif self._indicator >= self._num_examples-1:
- self._indicator = 0
- end_indicator = batch_size
-
- batch_data = self._data[self._indicator: end_indicator]
- batch_labels = self._labels[self._indicator: end_indicator]
- self._indicator = end_indicator
- return batch_data, batch_labels
-
- def residual_block(x, output_channel):
-
- """
- desc:定义残差块,每经过一个残差块图像大小减少一半,并且通道数加倍
- Args:
- @param x:残差块的输入
- @param output_channel:输出通道数
- """
-
- input_channel = x.get_shape().as_list()[-1]
- if input_channel * 2 == output_channel:
- increase_dim = True
- strides = (2, 2)
- elif input_channel == output_channel:
- increase_dim = False
- strides = (1, 1)
- else:
- raise Exception("input channel can't match output channel")
-
- conv1 = tf.layers.conv2d(x,
- output_channel,
- (3,3),
- strides = strides,
- padding = 'same',
- activation = tf.nn.relu,
- name = 'conv1')
-
- conv2 = tf.layers.conv2d(conv1,
- output_channel,
- (3, 3),
- strides = (1, 1),
- padding = 'same',
- activation = None,
- name = 'conv2')
- if increase_dim:
- # 由于输入和输出feature map不一致,对输入进行均值池化
- pooled_x = tf.layers.average_pooling2d(x,
- (2, 2),
- (2, 2),
- padding = 'valid')
- # 对通道维度进行填充
- padded_x = tf.pad(pooled_x,
- [[0,0],
- [0,0],
- [0,0],
- [input_channel // 2, input_channel // 2]])
- else:
- padded_x = x
- output_x = tf.nn.relu(conv2 + padded_x)
- return output_x
-
- def res_net(num_residual_blocks, num_filter_base,class_num):
- """
- 定义带有残差块的网络结构模型
- Args:
- @param num_residual_blocks: eg: [3, 4, 6, 3]
- @param num_filter_base:开始对原图像进行卷积操作中卷积核个数
- @param class_num:类别数
- """
- x = tf.placeholder(tf.float32, [None,3072])
- y = tf.placeholder(tf.int64, [None])
- # [None], eg: [0,5,6,3]
- x_image = tf.reshape(x, [-1, 3, 32, 32])
- # 32*32
- x_new = tf.transpose(x_image, perm=[0, 2, 3, 1])
-
- num_subsampling = len(num_residual_blocks)
- layers = []
-
- # x: [None, width, height, channel] -> [width, height, channel]
- input_size = x_new.get_shape().as_list()[1:]
- with tf.variable_scope('conv0'):
- conv0 = tf.layers.conv2d(x_new,
- num_filter_base,
- (3, 3),
- strides = (1, 1),
- padding = 'same',
- activation = tf.nn.relu,
- name = 'conv0')
- layers.append(conv0)
- # eg:num_subsampling = 4, sample_id = [0,1,2,3]
- for sample_id in range(num_subsampling):
- for i in range(num_residual_blocks[sample_id]):
- with tf.variable_scope("conv%d_%d" % (sample_id, i)):
- conv = residual_block(
- layers[-1],
- num_filter_base * (2 ** sample_id))
- layers.append(conv)
-
- # 计算feature map下采样多少
- multiplier = 2 ** (num_subsampling - 1)
-
- # 判断经过残差层之后,维度是否正确
- assert layers[-1].get_shape().as_list()[1:] == [input_size[0] / multiplier,
- input_size[1] / multiplier,
- num_filter_base * multiplier]
-
- with tf.variable_scope('fc'):
- # layer[-1].shape : [None, width, height, channel]
- # kernal_size: image_width, image_height
- global_pool = tf.reduce_mean(layers[-1], [1,2])
- logits = tf.layers.dense(global_pool, class_num)
- layers.append(logits)
- y_ = layers[-1]
- loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)\
- # indices
- predict = tf.argmax(y_, 1)
- # [1,0,1,1,1,0,0,0]
- correct_prediction = tf.equal(predict, y)
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
-
- with tf.name_scope('train_op'):
- train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
-
- return x,y,accuracy,loss,train_op
-
-
- batch_size = 32
-
- #训练轮数
- num_epoch = 10
-
- train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
- test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
-
-
- x,y,accuracy,loss,train_op = res_net([2,3,2], 32, 10)
- best_test_acc = 0
-
- with tf.Session() as sess:
- init = tf.global_variables_initializer().run()
- iters = 0
- for epoch in range(num_epoch):
- train_data = CifarData(train_filenames, True)
- train_size = train_data.size()
- # 获取每个epoch中batch个数
- batch_num = np.ceil(train_size / batch_size)
-
- for i in range(int(batch_num)):
- batch_data, batch_labels = train_data.next_batch(batch_size)
- loss_val, acc_val, _ = sess.run([loss, accuracy, train_op],feed_dict={x: batch_data,y: batch_labels})
-
- if iters % 1000 == 0 and iters != 0:
- print('Epoch:%d, [Train] Step: %d, [Train] loss: %4.5f, [Train] acc: %4.5f' % (epoch,iters, loss_val, acc_val))
-
- iters += 1
-
- # 每个epoch之后对数据评估
- test_data = CifarData(test_filenames, False)
- test_size = test_data.size()
- test_all_acc = []
- test_all_loss = []
- test_batch_num = np.ceil(test_size / batch_size)
- for j in range(int(test_batch_num)):
- test_batch_data, test_batch_labels = test_data.next_batch(batch_size)
- test_acc,test_loss= sess.run([accuracy,loss],feed_dict = {x:test_batch_data, y: test_batch_labels})
- test_all_acc.append(test_acc)
- test_all_loss.append(test_loss)
-
- if best_test_acc < np.mean(test_all_acc):
- best_test_acc = np.mean(test_all_acc)
- print('[Test] loss: %4.5f, [Test] acc: %4.5f Flag:*' % (np.mean(test_all_loss), np.mean(test_all_acc)))
- else:
- print('[Test] loss: %4.5f, [Test] acc: %4.5f Flag:-' % (np.mean(test_all_loss), np.mean(test_all_acc)))
结果展示:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。