赞
踩
上期介绍了tensorflow手写数字识别的基础篇,接下来介绍一下使用卷积神经完善后的代码部分
基础篇代码如下:
- import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
-
- import tensorflow as tf sess = tf.InteractiveSession()
-
- x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10])
-
- W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10]))
-
- sess.run(tf.initialize_all_variables())
-
- y = tf.nn.softmax(tf.matmul(x,W) + b)
-
- cross_entropy = -tf.reduce_sum(y_*tf.log(y))
-
- train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
-
- for i in range(1000): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]})
-
- correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
-
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
-
- print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})
下面介绍经过卷积神经网络完善后的代码
权重初始化
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
-
卷积和池化:
- def conv2d(x, W):
-
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],padding='SAME')
-
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
-
第一层卷积
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行 max pooling.
- x_image = tf.reshape(x, [-1,28,28,1])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
第二层的卷积
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
-
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
加上权重矩阵,然后加上relu
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
-
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
使用dropout防止过拟合
- keep_prob = tf.placeholder("float")
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
最后,我们添加一个 softmax 输出层
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
-
- y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
进行模型评估
- cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- sess.run(tf.initialize_all_variables())
- for i in range(20000):
- batch = mnist.train.next_batch(50)
- if i%100 == 0:
- train_accuracy = accuracy.eval(feed_dict={
- x:batch[0], y_: batch[1], keep_prob: 1.0})
- print "step %d, training accuracy %g"%(i, train_accuracy)
- train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
-
- print "test accuracy %g"%accuracy.eval(feed_dict={
- x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
以上代码,在最终测试集上的准确率为99.2%.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。