赞
踩
谷歌提供的训练好的Inception-v3模型: https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip
案例使用的数据集: http://download.tensorflow.org/example_images/flower_photos.tgz
数据集文件解压后,包含5个子文件夹,子文件夹的名称为花的名称,代表了不同的类别。平均每一种花有734张图片,图片是RGB色彩模式,大小也不相同。
- # -*- coding: utf-8 -*-
- """
- Created on Tue Apr 24 10:11:28 2018
- @author: admin
-
- @author: tz_zs
-
- 卷积神经网络 Inception-v3模型 迁移学习
- """
- import glob
- import os.path
- import random
- import numpy as np
- import tensorflow as tf
- from tensorflow.python.platform import gfile
-
- # inception-v3 模型瓶颈层的节点个数
- BOTTLENECK_TENSOR_SIZE = 2048
-
- # inception-v3 模型中代表瓶颈层结果的张量名称
- BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
- # 图像输入张量所对应的名称
- JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
-
- # 下载的谷歌训练好的inception-v3模型文件目录
- #MODEL_DIR = '/path/to/model/google2015-inception-v3'
- MODEL_DIR = 'E:/DeepLearning/Git/cnn/inception_dec_2015'
-
-
- # 下载的谷歌训练好的inception-v3模型文件名
- MODEL_FILE = 'tensorflow_inception_graph.pb'
-
- # 保存训练数据通过瓶颈层后提取的特征向量
- CACHE_DIR = 'tmp/bottleneck'
-
- # 图片数据的文件夹
- INPUT_DATA = 'E:/DeepLearning/Git/cnn/flower_photos'
-
-
- #训练模型的保存地址
- MODEL_SAVE_PATH="E:/DeepLearning/Git/cnn/model"
-
-
-
- # 验证的数据百分比
- VALIDATION_PERCENTAGE = 10
- # 测试的数据百分比
- TEST_PERCENTACE = 10
-
- # 定义神经网路的设置
- LEARNING_RATE = 0.01
- STEPS = 200
- BATCH = 100
-
-
- # 这个函数把数据集分成训练,验证,测试三部分
- def create_image_lists(testing_percentage, validation_percentage):
- """
- 这个函数把数据集分成训练,验证,测试三部分
- :param testing_percentage:测试的数据百分比 10
- :param validation_percentage:验证的数据百分比 10
- :return:
- """
- result = {}
- # 获取目录下所有子目录
- sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
- # ['/path/to/flower_data', '/path/to/flower_data\\daisy', '/path/to/flower_data\\dandelion',
- # '/path/to/flower_data\\roses', '/path/to/flower_data\\sunflowers', '/path/to/flower_data\\tulips']
-
- # 数组中的第一个目录是当前目录,这里设置标记,不予处理
- is_root_dir = True
-
- for sub_dir in sub_dirs: # 遍历目录数组,每次处理一种
- if is_root_dir:
- is_root_dir = False
- continue
-
- # 获取当前目录下所有的有效图片文件
- extensions = ['jpg', 'jepg', 'JPG', 'JPEG']
- file_list = []
- dir_name = os.path.basename(sub_dir) # 返回路径名路径的基本名称,如:daisy|dandelion|roses|sunflowers|tulips
- for extension in extensions:
- file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension) # 将多个路径组合后返回
- file_list.extend(glob.glob(file_glob)) # glob.glob返回所有匹配的文件路径列表,extend往列表中追加另一个列表
- if not file_list: continue
-
- # 通过目录名获取类别名称
- label_name = dir_name.lower() # 返回其小写
- # 初始化当前类别的训练数据集、测试数据集、验证数据集
- training_images = []
- testing_images = []
- validation_images = []
-
- for file_name in file_list: # 遍历此类图片的每张图片的路径
- base_name = os.path.basename(file_name) # 路径的基本名称也就是图片的名称,如:102841525_bd6628ae3c.jpg
- # 随机讲数据分到训练数据集、测试集和验证集
- chance = np.random.randint(100)
- if chance < validation_percentage:
- validation_images.append(base_name)
- elif chance < (testing_percentage + validation_percentage):
- testing_images.append(base_name)
- else:
- training_images.append(base_name)
-
- result[label_name] = {
- 'dir': dir_name,
- 'training': training_images,
- 'testing': testing_images,
- 'validation': validation_images
- }
- return result
-
-
- # 这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址
- def get_image_path(image_lists, image_dir, label_name, index, category):
- """
- :param image_lists:所有图片信息
- :param image_dir:根目录 ( 图片特征向量根目录 CACHE_DIR | 图片原始路径根目录 INPUT_DATA )
- :param label_name:类别的名称( daisy|dandelion|roses|sunflowers|tulips )
- :param index:编号
- :param category:所属的数据集( training|testing|validation )
- :return: 一张图片的地址
- """
- # 获取给定类别的图片集合
- label_lists = image_lists[label_name]
- # 获取这种类别的图片中,特定的数据集(base_name的一维数组)
- category_list = label_lists[category]
- mod_index = index % len(category_list) # 图片的编号%此数据集中图片数量
- # 获取图片文件名
- base_name = category_list[mod_index]
- sub_dir = label_lists['dir']
- # 拼接地址
- full_path = os.path.join(image_dir, sub_dir, base_name)
- return full_path
-
-
- # 图片的特征向量的文件地址
- def get_bottleneck_path(image_lists, label_name, index, category):
- return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt' # CACHE_DIR 特征向量的根地址
-
-
- # 计算特征向量
- def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):
- """
- :param sess:
- :param image_data:图片内容
- :param image_data_tensor:
- :param bottleneck_tensor:
- :return:
- """
- bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})
- bottleneck_values = np.squeeze(bottleneck_values)
- return bottleneck_values
-
-
- # 获取一张图片对应的特征向量的路径
- def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
- """
- :param sess:
- :param image_lists:
- :param label_name:类别名
- :param index:图片编号
- :param category:
- :param jpeg_data_tensor:
- :param bottleneck_tensor:
- :return:
- """
- label_lists = image_lists[label_name]
- sub_dir = label_lists['dir']
- sub_dir_path = os.path.join(CACHE_DIR, sub_dir) # 到类别的文件夹
- if not os.path.exists(sub_dir_path): os.makedirs(sub_dir_path)
-
- bottleneck_path = get_bottleneck_path(image_lists, label_name, index, category) # 获取图片特征向量的路径
- if not os.path.exists(bottleneck_path): # 如果不存在
- # 获取图片原始路径
- image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)
- # 获取图片内容
- image_data = gfile.FastGFile(image_path, 'rb').read()
- # 计算图片特征向量
- bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)
- # 将特征向量存储到文件
- bottleneck_string = ','.join(str(x) for x in bottleneck_values)
- with open(bottleneck_path, 'w') as bottleneck_file:
- bottleneck_file.write(bottleneck_string)
- else:
- # 读取保存的特征向量文件
- with open(bottleneck_path, 'r') as bottleneck_file:
- bottleneck_string = bottleneck_file.read()
- # 字符串转float数组
- bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
- return bottleneck_values
-
-
- # 随机获取一个batch的图片作为训练数据(特征向量,类别)
- def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category, jpeg_data_tensor,
- bottleneck_tensor):
- """
- :param sess:
- :param n_classes: 类别数量
- :param image_lists:
- :param how_many: 一个batch的数量
- :param category: 所属的数据集
- :param jpeg_data_tensor:
- :param bottleneck_tensor:
- :return: 特征向量列表,类别列表
- """
- bottlenecks = []
- ground_truths = []
- for _ in range(how_many):
- # 随机一个类别和图片编号加入当前的训练数据
- label_index = random.randrange(n_classes)
- label_name = list(image_lists.keys())[label_index] # 随机图片的类别名
- image_index = random.randrange(65536) # 随机图片的编号
- bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, category, jpeg_data_tensor,
- bottleneck_tensor) # 计算此图片的特征向量
- ground_truth = np.zeros(n_classes, dtype=np.float32)
- ground_truth[label_index] = 1.0
- bottlenecks.append(bottleneck)
- ground_truths.append(ground_truth)
- return bottlenecks, ground_truths
-
-
- # 获取全部的测试数据
- def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
- bottlenecks = []
- ground_truths = []
- label_name_list = list(image_lists.keys()) # ['dandelion', 'daisy', 'sunflowers', 'roses', 'tulips']
- for label_index, label_name in enumerate(label_name_list): # 枚举每个类别,如:0 sunflowers
- category = 'testing'
- for index, unused_base_name in enumerate(image_lists[label_name][category]): # 枚举此类别中的测试数据集中的每张图片
- '''''
- print(index, unused_base_name)
- 0 10386503264_e05387e1f7_m.jpg
- 1 1419608016_707b887337_n.jpg
- 2 14244410747_22691ece4a_n.jpg
- ...
- 105 9467543719_c4800becbb_m.jpg
- 106 9595857626_979c45e5bf_n.jpg
- 107 9922116524_ab4a2533fe_n.jpg
- '''
- bottleneck = get_or_create_bottleneck(
- sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor)
- ground_truth = np.zeros(n_classes, dtype=np.float32)
- ground_truth[label_index] = 1.0
- bottlenecks.append(bottleneck)
- ground_truths.append(ground_truth)
- return bottlenecks, ground_truths
-
-
- def main(_):
- image_lists = create_image_lists(TEST_PERCENTACE, VALIDATION_PERCENTAGE)
- n_classes = len(image_lists.keys())
- # 读取模型
- with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- # 加载模型,返回对应名称的张量
- bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME,
- JPEG_DATA_TENSOR_NAME])
- # 输入
- bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
- ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
-
- # 全连接层
- with tf.name_scope('final_training_ops'):
- weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
- biases = tf.Variable(tf.zeros([n_classes]))
- logits = tf.matmul(bottleneck_input, weights) + biases
- final_tensor = tf.nn.softmax(logits)
-
- # 损失
- cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
- cross_entropy_mean = tf.reduce_mean(cross_entropy)
- # 优化
- train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
-
- # 正确率
- with tf.name_scope('evaluation'):
- correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
- #sens_prediction = tf.equal(1-tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
- #spec_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
-
-
- # TP=sum(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
-
- evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
-
- #saver=tf.train.Saver()
-
- with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
- # 初始化参数
- init = tf.global_variables_initializer()
- sess.run(init)
- print( sess.run(init))
-
- for i in range(STEPS):
- # 每次获取一个batch的训练数据
- train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(sess, n_classes, image_lists, BATCH,
- 'training', jpeg_data_tensor,
- bottleneck_tensor)
- # 训练
- sess.run(train_step,
- feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})
-
- # 验证
- if i % 100 == 0 or i + 1 == STEPS:
- validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(sess, n_classes,
- image_lists, BATCH,
- 'validation',
- jpeg_data_tensor,
- bottleneck_tensor)
- validation_accuracy = sess.run(evaluation_step, feed_dict={bottleneck_input: validation_bottlenecks,
- ground_truth_input: validation_ground_truth})
- print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%' % (
- i, BATCH, validation_accuracy * 100))
-
-
- # 测试
- test_bottlenecks, test_ground_truth = get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor,
- bottleneck_tensor)
- test_accuracy = sess.run(evaluation_step,
- feed_dict={bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth})
- print('Final test accuracy = %.1f%%' % (test_accuracy * 100))
-
-
-
- if __name__ == '__main__':
- tf.app.run()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。