当前位置:   article > 正文

机器学习周刊03:如何学习深度学习?2024 年学习生成式 AI 路线图、如何构建高效的RAG系统、苹果 腾讯最新论文、阿里DreaMoving_rag学习路径

rag学习路径

腾讯推出的 AppAgent,是一个多模态智能体,通过识别当前手机的界面和用户指令直接操作手机界面,能像真实用户一样操作手机!

机器学习周刊:关注Python、机器学习、深度学习、大模型等硬核技术

1、如何学习深度学习

最近X上有推友重提这篇文章,是网友看过 Jeremy 教授的 fast.ai 深度学习课程后,把每节课提到的学习建议和忠告都总结了下来:https://forums.fast.ai/t/things-jeremy-says-to-do/36682/1

我让ChatGPT、Claude、Gemini翻译并总结了这篇文章,Gemini完成的更加出色,给出了26条关于学习方法和一些细节的建议(强烈建议,如果时间允许,可以看原文):

  1. **倾听:**仔细注意老师在整堂课中的建议和提示。
  2. **不要被理论淹没:**专注于运行代码并对其进行实验,而不是一开始就陷入理论细节中。
  3. **选择一个项目并把它做得精彩:**选择一个你感兴趣的项目,并投入额外的精力,确保对其进行优化和改进。
  4. **探索不同的数据集:**不要局限于课程中提供的数据集;自己寻找数据集并对其进行实验。
  5. **不要使你的代码过于复杂:**保持你的代码简单和有条理,避免不必要的复杂性。
  6. **学习 Jupyter 快捷键:**熟悉 Jupyter 快捷键以提高你的效率。
  7. **运行代码并对其进行实验:**不要只阅读代码;运行它并尝试不同的输入和参数来观察会发生什么。
  8. **不要花几个小时试图立即理解所有理论:**可以先不理解所有内容;专注于实践方面,并随着时间的推移逐渐加深你的理解。
  9. **阅读比赛获胜者的论文:**通过阅读比赛获胜者的论文来学习他人的成功经验,注意他们的方法和见解。
  10. **使用你拥有的所有文本:**在处理 NLP 时,确保使用所有可用的文本,包括未标记的验证集,以增强模型的性能。
  11. **学会发音希腊字母:**熟悉深度学习论文中常用的希腊字母的发音。
  12. **非常习惯 PyTorch 张量:**培养对 PyTorch 张量和运算的扎实理解。
  13. **应用广播规则:**在处理更高秩张量时学习并应用广播规则。
  14. **不要假设库是正确的:**对库持怀疑态度;验证其正确性并了解其工作原理。
  15. **不要担心你是否跟上了所有内容:**感到不知所措是正常的;专注于你能理解的内容,并逐渐建立你的知识。
  16. **学会调试深度学习代码:**调试 DL 代码具有挑战性;确保你的代码简单,并检查中间结果以尽量减少错误。
  17. **用玩具问题进行实验:**创建并解决玩具问题以深入了解深度学习的概念和技术。
  18. **学习 Swift for TensorFlow:**抓住机会学习 Swift for TensorFlow,它为 DL 开发提供了优势。
  19. **为 Swift for TensorFlow 生态系统做出贡献:**通过为代码、文档或讨论做出贡献来参与 Swift for TensorFlow 社区。
  20. **使用 compose 进行函数组合:**使用 compose 函数熟悉函数组合的概念。
  21. **谨慎的数据增强:**在增强数据时,仔细考虑转换及其对数据完整性和标签准确性的影响。
  22. **尝试不同的架构:**尝试不同的神经网络架构以深入了解它们的性能特征。
  23. **不要冻结批归一化层:**避免在微调期间冻结批归一化层,以确保适当的权重更新。
  24. **尽可能以原始方式预处理数据:**作为一般规则,尽量减少对神经网络数据的预处理,以保留其原始信息和结构。
  25. **学习 Swift for TensorFlow:**抓住机会学习 Swift for TensorFlow,它为 DL 开发提供了优势。
  26. **自定义 Swift for TensorFlow:**Swift for TensorFlow 是完全可自定义的,允许你修改和扩展它以满足你的特定需求。

2、2024 年学习生成式 AI 路线图

项目地址:https://github.com/krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024

这个项目总结了生成式AI学习路线,从Python、机器学习、NLP、深度学习、GPT-4、Langchain、向量数据库、LLM项目部署,非常顺畅。

3、机器学习调查

地址:https://github.com/metrofun/machine-learning-surveys

有关主动学习、生物信息学、分类、度量学习、蒙特卡罗、多视图学习等方面的调查、教程和书籍的精选列表。

Image

4、应用机器学习

地址:https://github.com/eugeneyan/applied-ml

这个项目分享了各公司在生产中数据科学和机器学习方面的论文和技术博客,已经更新了3年。

主要内容包括:

  • 如何构架问题
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/128412
推荐阅读
相关标签