赞
踩
- #1、加载数据并查看
- data("iris")
- summary(iris)
- ## Sepal.Length Sepal.Width Petal.Length Petal.Width
- ## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
- ## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
- ## Median :5.800 Median :3.000 Median :4.350 Median :1.300
- ## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
- ## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
- ## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
- ## Species
- ## setosa :50
- ## versicolor:50
- ## virginica :50
- ##
- ##
- ##
str(iris)
- ## 'data.frame': 150 obs. of 5 variables:
- ## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
- ## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
- ## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
- ## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
- ## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- #2、创建训练集和测试集数据
- set.seed(2001)
- library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.3
- index <- createDataPartition(iris$Species, p=0.7, list=F)
- train_iris <- iris[index, ]
- test_iris <- iris[-index, ]
-
- #3、建模
- library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
- ##
- ## Attaching package: 'randomForest'
- ## The following object is masked from 'package:ggplot2':
- ##
- ## margin
- model_iris <- randomForest(Species~., data=train_iris, ntree=50, nPerm=10, mtry=3, proximity=T, importance=T)
-
- #4、模型评估
- model_iris
- ##
- ## Call:
- ## randomForest(formula = Species ~ ., data = train_iris, ntree = 50, nPerm = 10, mtry = 3, proximity = T, importance = T)
- ## Type of random forest: classification
- ## Number of trees: 50
- ## No. of variables tried at each split: 3
- ##
- ## OOB estimate of error rate: 4.76%
- ## Confusion matrix:
- ## setosa versicolor virginica class.error
- ## setosa 35 0 0 0.00000000
- ## versicolor 0 32 3 0.08571429
- ## virginica 0 2 33 0.05714286
str(model_iris)
- ## List of 19
- ## $ call : language randomForest(formula = Species ~ ., data = train_iris, ntree = 50, nPerm = 10, mtry = 3, proximity = T, importance = T)
- ## $ type : chr "classification"
- ## $ predicted : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- ## ..- attr(*, "names")= chr [1:105] "5" "7" "8" "11" ...
- ## $ err.rate : num [1:50, 1:4] 0.0513 0.0758 0.0741 0.0435 0.0505 ...
- ## ..- attr(*, "dimnames")=List of 2
- ## .. ..$ : NULL
- ## .. ..$ : chr [1:4] "OOB" "setosa" "versicolor" "virginica"
- ## $ confusion : num [1:3, 1:4] 35 0 0 0 32 2 0 3 33 0 ...
- ## ..- attr(*, "dimnames")=List of 2
- ## .. ..$ : chr [1:3] "setosa" "versicolor" "virginica"
- ## .. ..$ : chr [1:4] "setosa" "versicolor" "virginica" "class.error"
- ## $ votes : matrix [1:105, 1:3] 1 1 1 1 1 1 1 1 1 1 ...
- ## ..- attr(*, "dimnames")=List of 2
- ## .. ..$ : chr [1:105] "5" "7" "8" "11" ...
- ## .. ..$ : chr [1:3] "setosa" "versicolor" "virginica"
- ## ..- attr(*, "class")= chr [1:2] "matrix" "votes"
- ## $ oob.times : num [1:105] 15 23 22 16 17 11 20 20 17 19 ...
- ## $ classes : chr [1:3] "setosa" "versicolor" "virginica"
- ## $ importance : num [1:4, 1:5] 0 0 0.3417 0.34918 -0.00518 ...
- ## ..- attr(*, "dimnames")=List of 2
- ## .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
- ## .. ..$ : chr [1:5] "setosa" "versicolor" "virginica" "MeanDecreaseAccuracy" ...
- ## $ importanceSD : num [1:4, 1:4] 0 0 0.04564 0.04711 0.00395 ...
- ## ..- attr(*, "dimnames")=List of 2
- ## .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
- ## .. ..$ : chr [1:4] "setosa" "versicolor" "virginica" "MeanDecreaseAccuracy"
- ## $ localImportance: NULL
- ## $ proximity : num [1:105, 1:105] 1 1 1 1 1 1 1 1 1 1 ...
- ## ..- attr(*, "dimnames")=List of 2
- ## .. ..$ : chr [1:105] "5" "7" "8" "11" ...
- ## .. ..$ : chr [1:105] "5" "7" "8" "11" ...
- ## $ ntree : num 50
- ## $ mtry : num 3
- ## $ forest :List of 14
- ## ..$ ndbigtree : int [1:50] 11 5 9 9 9 9 9 11 11 9 ...
- ## ..$ nodestatus: int [1:17, 1:50] 1 -1 1 1 1 -1 -1 1 -1 -1 ...
- ## ..$ bestvar : int [1:17, 1:50] 4 0 4 3 3 0 0 1 0 0 ...
- ## ..$ treemap : int [1:17, 1:2, 1:50] 2 0 4 6 8 0 0 10 0 0 ...
- ## ..$ nodepred : int [1:17, 1:50] 0 1 0 0 0 2 3 0 3 2 ...
- ## ..$ xbestsplit: num [1:17, 1:50] 0.8 0 1.65 5.25 4.85 0 0 6.05 0 0 ...
- ## ..$ pid : num [1:3] 1 1 1
- ## ..$ cutoff : num [1:3] 0.333 0.333 0.333
- ## ..$ ncat : Named int [1:4] 1 1 1 1
- ## .. ..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
- ## ..$ maxcat : int 1
- ## ..$ nrnodes : int 17
- ## ..$ ntree : num 50
- ## ..$ nclass : int 3
- ## ..$ xlevels :List of 4
- ## .. ..$ Sepal.Length: num 0
- ## .. ..$ Sepal.Width : num 0
- ## .. ..$ Petal.Length: num 0
- ## .. ..$ Petal.Width : num 0
- ## $ y : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- ## ..- attr(*, "names")= chr [1:105] "5" "7" "8" "11" ...
- ## $ test : NULL
- ## $ inbag : NULL
- ## $ terms :Classes 'terms', 'formula' length 3 Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
- ## .. ..- attr(*, "variables")= language list(Species, Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
- ## .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
- ## .. .. ..- attr(*, "dimnames")=List of 2
- ## .. .. .. ..$ : chr [1:5] "Species" "Sepal.Length" "Sepal.Width" "Petal.Length" ...
- ## .. .. .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
- ## .. ..- attr(*, "term.labels")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
- ## .. ..- attr(*, "order")= int [1:4] 1 1 1 1
- ## .. ..- attr(*, "intercept")= num 0
- ## .. ..- attr(*, "response")= int 1
- ## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
- ## .. ..- attr(*, "predvars")= language list(Species, Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
- ## .. ..- attr(*, "dataClasses")= Named chr [1:5] "factor" "numeric" "numeric" "numeric" ...
- ## .. .. ..- attr(*, "names")= chr [1:5] "Species" "Sepal.Length" "Sepal.Width" "Petal.Length" ...
- ## - attr(*, "class")= chr [1:2] "randomForest.formula" "randomForest"
- pred <- predict(model_iris, train_iris)
- mean(pred==train_iris[, 5])
## [1] 1
- #5、预测
- pred_iris <- predict(model_iris, test_iris)
- table(pred_iris, test_iris[, 5])
- ##
- ## pred_iris setosa versicolor virginica
- ## setosa 15 0 0
- ## versicolor 0 13 2
- ## virginica 0 2 13
mean(pred_iris==test_iris[, 5])
## [1] 0.9111111
- library(gmodels)
- CrossTable(pred_iris, test_iris[, 5])
- ##
- ##
- ## Cell Contents
- ## |-------------------------|
- ## | N |
- ## | Chi-square contribution |
- ## | N / Row Total |
- ## | N / Col Total |
- ## | N / Table Total |
- ## |-------------------------|
- ##
- ##
- ## Total Observations in Table: 45
- ##
- ##
- ## | test_iris[, 5]
- ## pred_iris | setosa | versicolor | virginica | Row Total |
- ## -------------|------------|------------|------------|------------|
- ## setosa | 15 | 0 | 0 | 15 |
- ## | 20.000 | 5.000 | 5.000 | |
- ## | 1.000 | 0.000 | 0.000 | 0.333 |
- ## | 1.000 | 0.000 | 0.000 | |
- ## | 0.333 | 0.000 | 0.000 | |
- ## -------------|------------|------------|------------|------------|
- ## versicolor | 0 | 13 | 2 | 15 |
- ## | 5.000 | 12.800 | 1.800 | |
- ## | 0.000 | 0.867 | 0.133 | 0.333 |
- ## | 0.000 | 0.867 | 0.133 | |
- ## | 0.000 | 0.289 | 0.044 | |
- ## -------------|------------|------------|------------|------------|
- ## virginica | 0 | 2 | 13 | 15 |
- ## | 5.000 | 1.800 | 12.800 | |
- ## | 0.000 | 0.133 | 0.867 | 0.333 |
- ## | 0.000 | 0.133 | 0.867 | |
- ## | 0.000 | 0.044 | 0.289 | |
- ## -------------|------------|------------|------------|------------|
- ## Column Total | 15 | 15 | 15 | 45 |
- ## | 0.333 | 0.333 | 0.333 | |
- ## -------------|------------|------------|------------|------------|
- ##
- ##
在随机森林算法的函数randomForest()中有两个非常重要的参数,而这两个参数又将影响模型的准确性,它们分别是mtry和ntree。一般对mtry的选择是逐一尝试,直到找到比较理想的值,ntree的选择可通过图形大致判断模型内误差稳定时的值。 randomForest包中的randomForest(formula, data, ntree, nPerm, mtry, proximity, importace)函数:随机森林分类与回归。ntree表示生成决策树的数目(不应设置太小,默认为 500);nPerm表示计算importance时的重复次数,数量大于1给出了比较稳定的估计,但不是很有效(目前只实现了回归);mtry表示选择的分裂属性的个数;proximity表示是否生成邻近矩阵,为T表示生成邻近矩阵;importance表示输出分裂属性的重要性。
下面使用坦泰尼克号乘客是否存活数据应用到随机森林算法中,看看模型的准确性如何。
- #1、加载数据并查看:同时读取训练样本和测试样本集
- train <- read.table("F:\\R\\Rworkspace\\RandomForest/train.csv", header=T, sep=",")
- test <- read.table("F:\\R\\Rworkspace\\RandomForest/test.csv", header=T, sep=",")
- #注意:训练集和测试集数据来自不同的数据集,一定要注意测试集和训练集的factor的levels相同,否则,在利用训练集训练的模型对测试集进行预测时,会报错!!!
-
- str(train)
- ## 'data.frame': 891 obs. of 8 variables:
- ## $ Survived: int 0 1 1 1 0 0 0 0 1 1 ...
- ## $ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
- ## $ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...
- ## $ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
- ## $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
- ## $ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
- ## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
- ## $ Embarked: Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
str(test)
- ## 'data.frame': 418 obs. of 7 variables:
- ## $ Pclass : int 3 3 2 3 3 3 3 2 3 3 ...
- ## $ Sex : Factor w/ 2 levels "female","male": 2 1 2 2 1 2 1 2 1 2 ...
- ## $ Age : num 34.5 47 62 27 22 14 30 26 18 21 ...
- ## $ SibSp : int 0 1 0 0 1 0 0 1 0 2 ...
- ## $ Parch : int 0 0 0 0 1 0 0 1 0 0 ...
- ## $ Fare : num 7.83 7 9.69 8.66 12.29 ...
- ## $ Embarked: Factor w/ 3 levels "C","Q","S": 2 3 2 3 3 3 2 3 1 3 ...
- #从上可知:训练集数据共891条记录,8个变量,Embarked因子水平为4;测试集数据共418条记录,7个变量,Embarked因子水平为3;训练集中存在缺失数据;Survived因变量为数字类型,测试集数据无因变量
-
- #2、数据清洗
- #1)调整测试集与训练基地因子水平
- levels(train$Embarked)
## [1] "" "C" "Q" "S"
levels(test$Embarked)
## [1] "C" "Q" "S"
- levels(test$Embarked) <- levels(train$Embarked)
-
- #2)把因变量转化为因子类型
- train$Survived <- as.factor(train$Survived)
-
- #3)使用rfImpute()函数补齐训练集的缺失值NA
- library(randomForest)
- train_impute <- rfImpute(Survived~., data=train)
- ## ntree OOB 1 2
- ## 300: 16.39% 7.83% 30.12%
- ## ntree OOB 1 2
- ## 300: 16.50% 8.93% 28.65%
- ## ntree OOB 1 2
- ## 300: 16.72% 8.74% 29.53%
- ## ntree OOB 1 2
- ## 300: 16.50% 8.56% 29.24%
- ## ntree OOB 1 2
- ## 300: 17.28% 9.47% 29.82%
- #4)补齐测试集的缺失值:对待测样本进行预测,发现待测样本中存在缺失值,这里使用多重插补法将缺失值补齐
- summary(test)
- ## Pclass Sex Age SibSp
- ## Min. :1.000 female:152 Min. : 0.17 Min. :0.0000
- ## 1st Qu.:1.000 male :266 1st Qu.:21.00 1st Qu.:0.0000
- ## Median :3.000 Median :27.00 Median :0.0000
- ## Mean :2.266 Mean :30.27 Mean :0.4474
- ## 3rd Qu.:3.000 3rd Qu.:39.00 3rd Qu.:1.0000
- ## Max. :3.000 Max. :76.00 Max. :8.0000
- ## NA's :86
- ## Parch Fare Embarked
- ## Min. :0.0000 Min. : 0.000 :102
- ## 1st Qu.:0.0000 1st Qu.: 7.896 C: 46
- ## Median :0.0000 Median : 14.454 Q:270
- ## Mean :0.3923 Mean : 35.627 S: 0
- ## 3rd Qu.:0.0000 3rd Qu.: 31.500
- ## Max. :9.0000 Max. :512.329
- ## NA's :1
- #可是看出测试集数据存在缺失值NA,Age和Fare的数据有NA
-
- #多重插补法填充缺失值:
- library(mice)
## Loading required package: Rcpp
## mice 2.25 2015-11-09
imput <- mice(data=test, m=10)
- ##
- ## iter imp variable
- ## 1 1 Age Fare
- ## 1 2 Age Fare
- ## 1 3 Age Fare
- ## 1 4 Age Fare
- ## 1 5 Age Fare
- ## 1 6 Age Fare
- ## 1 7 Age Fare
- ## 1 8 Age Fare
- ## 1 9 Age Fare
- ## 1 10 Age Fare
- ## 2 1 Age Fare
- ## 2 2 Age Fare
- ## 2 3 Age Fare
- ## 2 4 Age Fare
- ## 2 5 Age Fare
- ## 2 6 Age Fare
- ## 2 7 Age Fare
- ## 2 8 Age Fare
- ## 2 9 Age Fare
- ## 2 10 Age Fare
- ## 3 1 Age Fare
- ## 3 2 Age Fare
- ## 3 3 Age Fare
- ## 3 4 Age Fare
- ## 3 5 Age Fare
- ## 3 6 Age Fare
- ## 3 7 Age Fare
- ## 3 8 Age Fare
- ## 3 9 Age Fare
- ## 3 10 Age Fare
- ## 4 1 Age Fare
- ## 4 2 Age Fare
- ## 4 3 Age Fare
- ## 4 4 Age Fare
- ## 4 5 Age Fare
- ## 4 6 Age Fare
- ## 4 7 Age Fare
- ## 4 8 Age Fare
- ## 4 9 Age Fare
- ## 4 10 Age Fare
- ## 5 1 Age Fare
- ## 5 2 Age Fare
- ## 5 3 Age Fare
- ## 5 4 Age Fare
- ## 5 5 Age Fare
- ## 5 6 Age Fare
- ## 5 7 Age Fare
- ## 5 8 Age Fare
- ## 5 9 Age Fare
- ## 5 10 Age Fare
- Age <- data.frame(Age=apply(imput$imp$Age, 1, mean))
- Fare <- data.frame(Fare=apply(imput$imp$Fare, 1, mean))
-
- #添加行标号:
- test$Id <- row.names(test)
- Age$Id <- row.names(Age)
- Fare$Id <- row.names(Fare)
-
- #替换缺失值:
- test[test$Id %in% Age$Id, 'Age'] <- Age$Age
- test[test$Id %in% Fare$Id, 'Fare'] <- Fare$Fare
- summary(test)
- ## Pclass Sex Age SibSp
- ## Min. :1.000 female:152 Min. : 0.17 Min. :0.0000
- ## 1st Qu.:1.000 male :266 1st Qu.:22.00 1st Qu.:0.0000
- ## Median :3.000 Median :26.19 Median :0.0000
- ## Mean :2.266 Mean :29.41 Mean :0.4474
- ## 3rd Qu.:3.000 3rd Qu.:36.65 3rd Qu.:1.0000
- ## Max. :3.000 Max. :76.00 Max. :8.0000
- ## Parch Fare Embarked Id
- ## Min. :0.0000 Min. : 0.000 :102 Length:418
- ## 1st Qu.:0.0000 1st Qu.: 7.896 C: 46 Class :character
- ## Median :0.0000 Median : 14.454 Q:270 Mode :character
- ## Mean :0.3923 Mean : 35.583 S: 0
- ## 3rd Qu.:0.0000 3rd Qu.: 31.472
- ## Max. :9.0000 Max. :512.329
- #从上可知:测试数据集中已经没有了NA值。
-
- #3、选着随机森林的mtry和ntree值
- #1)选着mtry
- (n <- length(names(train)))
## [1] 8
- library(randomForest)
- for(i in 1:n) {
- model <- randomForest(Survived~., data=train_impute, mtry=i)
- err <- mean(model$err.rate)
- print(err)
- }
- ## [1] 0.2100028
- ## [1] 0.1889116
- ## [1] 0.1776607
- ## [1] 0.1902606
- ## [1] 0.1960938
- ## [1] 0.1953451
- ## [1] 0.1951303
- ## [1] 0.2018745
- #从上可知:mtry=2或者mtry=3时,模型内评价误差最小,故确定参数mtry=2或者mtry=3
-
- #2)选着ntree
- set.seed(2002)
- model <- randomForest(Survived~., data=train_impute, mtry=2, ntree=1000)
- plot(model)
- #从上图可知:ntree在400左右时,模型内误差基本稳定,故取ntree=400
-
- #4、建模
- model_fit <- randomForest(Survived~., data=train_impute, mtry=2, ntree=400, importance=T)
-
- #5、模型评估
- model_fit
- ##
- ## Call:
- ## randomForest(formula = Survived ~ ., data = train_impute, mtry = 2, ntree = 400, importance = T)
- ## Type of random forest: classification
- ## Number of trees: 400
- ## No. of variables tried at each split: 2
- ##
- ## OOB estimate of error rate: 16.61%
- ## Confusion matrix:
- ## 0 1 class.error
- ## 0 500 49 0.08925319
- ## 1 99 243 0.28947368
- #查看变量的重要性
- (importance <- importance(x=model_fit))
- ## 0 1 MeanDecreaseAccuracy MeanDecreaseGini
- ## Pclass 16.766454 28.241508 32.16125 33.15984
- ## Sex 46.578191 76.145306 72.42624 100.74843
- ## Age 19.882605 24.586274 30.52032 60.85186
- ## SibSp 19.070707 2.834303 18.95690 16.11720
- ## Parch 10.366140 8.380559 13.18282 12.28725
- ## Fare 18.649672 20.967558 29.43262 66.31489
- ## Embarked 7.904436 11.479919 14.18780 12.68924
- #绘制变量的重要性图
- varImpPlot(model_fit)
- #从上图可知:模型中乘客的性别最为重要,接下来的是Pclass,age,Fare和Fare,age,Pclass。
-
- #6、预测
- #1)对训练集数据预测:
- train_pred <- predict(model_fit, train_impute)
- mean(train_pred==train_impute$Survived)
## [1] 0.9135802
table(train_pred, train_impute$Survived)
- ##
- ## train_pred 0 1
- ## 0 535 63
- ## 1 14 279
- #模型的预测精度在90%以上
-
- #2)对测试集数据预测:
- test_pred <- predict(model_fit, test[, 1:7])
- head(test_pred)
- ## 1 2 3 4 5 6
- ## 0 0 0 0 1 0
- ## Levels: 0 1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。