赞
踩
1.json后缀的文件
2.数据是json line格式,一行一条json
3. json结构如下
- {
-
- "content": "①北京和上海户籍的游客可获得韩国多次签证;②“整容客”可以不经由韩国使领馆、直接在网上申请签证;③中泰免签的实施日期尚未敲定;④越南已向中国持通行证旅游的公民全面开放。"
- }
- from transformers import AutoTokenizer
- from datasets import load_dataset
-
- path = r'/tmp/pycharm_project_806/LCSTS_new/train.json' # a chinese text dataset
- raw_data = load_dataset("json", data_files=path, split='train')
-
- training_corpus = (
- raw_data[i : i + 1000]["content"]
- for i in range(0, len(raw_data), 1000)
- )
-
- old_tokenizer = AutoTokenizer.from_pretrained("/home/chenjq/model/gpt2")
- tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000)
-
- example = '就是去美国大使馆的官方网站,它有中文版,去把每一条仔细研究透了,把每一个表格和材料都准备好了' # chinese text
- old_tokens = old_tokenizer.tokenize(example)
- print('old_tokens:',old_tokens)
-
- new_tokens = tokenizer.tokenize(example)
- print('new_tokens',new_tokens)
- tokenizer.save_pretrained("./my-tok")
- from tokenizers import (
- decoders,
- models,
- normalizers,
- pre_tokenizers,
- processors,
- trainers,
- Tokenizer,
- )
- from datasets import load_dataset
- from tokenizers import Regex
- path = r'wiki.json' # a chinese text dataset
- # path = r'all_train.json' # a chinese text dataset
- # path = r'cluener.jsonl' # a chinese text dataset
- # path = r'/tmp/pycharm_project_806/cluener.json' # a chinese text dataset
- raw_data = load_dataset("json", data_files=path, split='train')
- # raw_data = raw_data.select(range(10000))
- training_corpus = (
- raw_data[i : i + 1000]["content"]
- for i in range(0, len(raw_data), 1000)
- )
-
-
- tokenizer = Tokenizer(models.Unigram())
-
- # NLG不应当加入 normalizers.Lowercase(),因为在decode的时候,就无法生成大写的了
- # 在bert等NLU模型中,可以加入 normalizers.Lowercase(),因为NLU一般不用于文本生成,而是用于文本理解(如文本分类,实体抽取),
- # 这种情况下其实大写小写无所谓
- tokenizer.normalizer = normalizers.Sequence(
- [
- normalizers.Replace("``", '"'),
- normalizers.Replace("''", '"'),
- normalizers.NFKD(),
- normalizers.StripAccents(),
- normalizers.Replace(Regex(" {2,}"), " "),
- ]
- )
-
- tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()
-
- print(tokenizer.pre_tokenizer.pre_tokenize_str("北京是中国的首都,今天天气真好。Let's test this tokenizer."))
- print(1)
-
- special_tokens = ["<bos>","<eos>", '<sep>'] + [f'<unused{i}>' for i in range(50)]
- trainer = trainers.UnigramTrainer(
- vocab_size=52000, special_tokens=special_tokens, unk_token="<unk>",max_piece_length=4,
- )
- tokenizer.train_from_iterator(training_corpus, trainer=trainer)
-
- encoding = tokenizer.encode("北京是中国的首都,今天天气真好。Let's test this tokenizer.")
- print(encoding.tokens)
-
- bos_token_id = tokenizer.token_to_id("<bos>")
- eos_token_id = tokenizer.token_to_id("<eos>")
- sep_token_id = tokenizer.token_to_id("<sep>")
-
-
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"<bos>:0 $A:0 <eos>:0",
- pair=f"<bos>:0 $A:0 <sep>:0 $B:1 <eos>:1",
- special_tokens=[("<bos>", bos_token_id), ("<eos>", eos_token_id), ("<sep>", sep_token_id)],
- )
-
- encoding = tokenizer.encode("北京是中国的首都,今天天气真好。Let's test this tokenizer.")
- print(encoding.tokens)
-
- encoding = tokenizer.encode("北京是中国的首都,今天天气真好。Let's test this tokenizer." ,'i am happy.')
- print(encoding.tokens)
-
- print(tokenizer.decode(encoding.ids))
-
- tokenizer.decoder = decoders.Metaspace()
-
- print(tokenizer.decode(encoding.ids))
-
-
- from transformers import PreTrainedTokenizerFast
-
- wrapped_tokenizer = PreTrainedTokenizerFast(
- tokenizer_object=tokenizer,
- bos_token="<bos>",
- eos_token="<eos>",
- sep_token="<sep>",
- )
- wrapped_tokenizer.save_pretrained('./sp-tok-v4')
-
- print(wrapped_tokenizer.tokenize("北京是中国的首都,今天天气真好。"))
- #!/usr/bin/env python
- # coding=utf-8
- # Copyright 2020 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
- Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
- https://huggingface.co/models?filter=text-generation
- """
- # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
-
- import logging
- import math
- import os
- import sys
- import warnings
- from dataclasses import dataclass, field
- from itertools import chain
- from typing import Optional
-
- import datasets
- import evaluate
- import torch
- from datasets import load_dataset
-
- import transformers
- from transformers import (
- CONFIG_MAPPING,
- MODEL_FOR_CAUSAL_LM_MAPPING,
- AutoConfig,
- AutoModelForCausalLM,
- AutoTokenizer,
- HfArgumentParser,
- Trainer,
- TrainingArguments,
- default_data_collator,
- is_torch_tpu_available,
- set_seed,
- )
- from transformers.testing_utils import CaptureLogger
- from transformers.trainer_utils import get_last_checkpoint
- from transformers.utils import check_min_version, send_example_telemetry
- from transformers.utils.versions import require_version
-
-
- # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
- check_min_version("4.37.0.dev0")
-
- require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
-
- logger = logging.getLogger(__name__)
-
-
- MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
- MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
-
-
- @dataclass
- class ModelArguments:
- """
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
- """
-
- model_name_or_path: Optional[str] = field(
- default=None,
- metadata={
- "help": (
- "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
- )
- },
- )
- model_type: Optional[str] = field(
- default=None,
- metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
- )
- config_overrides: Optional[str] = field(
- default=None,
- metadata={
- "help": (
- "Override some existing default config settings when a model is trained from scratch. Example: "
- "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
- )
- },
- )
- config_name: Optional[str] = field(
- default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
- )
- tokenizer_name: Optional[str] = field(
- default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
- )
- cache_dir: Optional[str] = field(
- default=None,
- metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
- )
- use_fast_tokenizer: bool = field(
- default=True,
- metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
- )
- model_revision: str = field(
- default="main",
- metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
- )
- token: str = field(
- default=None,
- metadata={
- "help": (
- "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
- "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
- )
- },
- )
- use_auth_token: bool = field(
- default=None,
- metadata={
- "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
- },
- )
- trust_remote_code: bool = field(
- default=False,
- metadata={
- "help": (
- "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
- "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
- "execute code present on the Hub on your local machine."
- )
- },
- )
- torch_dtype: Optional[str] = field(
- default=None,
- metadata={
- "help": (
- "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
- "dtype will be automatically derived from the model's weights."
- ),
- "choices": ["auto", "bfloat16", "float16", "float32"],
- },
- )
- low_cpu_mem_usage: bool = field(
- default=False,
- metadata={
- "help": (
- "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
- "set True will benefit LLM loading time and RAM consumption."
- )
- },
- )
-
- def __post_init__(self):
- if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
- raise ValueError(
- "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
- )
-
-
- @dataclass
- class DataTrainingArguments:
- """
- Arguments pertaining to what data we are going to input our model for training and eval.
- """
-
- dataset_name: Optional[str] = field(
- default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
- )
- dataset_config_name: Optional[str] = field(
- default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
- )
- train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
- validation_file: Optional[str] = field(
- default=None,
- metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
- )
- max_train_samples: Optional[int] = field(
- default=None,
- metadata={
- "help": (
- "For debugging purposes or quicker training, truncate the number of training examples to this "
- "value if set."
- )
- },
- )
- max_eval_samples: Optional[int] = field(
- default=None,
- metadata={
- "help": (
- "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
- "value if set."
- )
- },
- )
- streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
- block_size: Optional[int] = field(
- default=None,
- metadata={
- "help": (
- "Optional input sequence length after tokenization. "
- "The training dataset will be truncated in block of this size for training. "
- "Default to the model max input length for single sentence inputs (take into account special tokens)."
- )
- },
- )
- overwrite_cache: bool = field(
- default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
- )
- validation_split_percentage: Optional[int] = field(
- default=5,
- metadata={
- "help": "The percentage of the train set used as validation set in case there's no validation split"
- },
- )
- preprocessing_num_workers: Optional[int] = field(
- default=None,
- metadata={"help": "The number of processes to use for the preprocessing."},
- )
- keep_linebreaks: bool = field(
- default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
- )
-
- def __post_init__(self):
- if self.streaming:
- require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
-
- if self.dataset_name is None and self.train_file is None and self.validation_file is None:
- raise ValueError("Need either a dataset name or a training/validation file.")
- else:
- if self.train_file is not None:
- extension = self.train_file.split(".")[-1]
- assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
- if self.validation_file is not None:
- extension = self.validation_file.split(".")[-1]
- assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
-
-
- def main():
- # See all possible arguments in src/transformers/training_args.py
- # or by passing the --help flag to this script.
- # We now keep distinct sets of args, for a cleaner separation of concerns.
-
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
- # If we pass only one argument to the script and it's the path to a json file,
- # let's parse it to get our arguments.
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
- else:
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
-
- if model_args.use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
- FutureWarning,
- )
- if model_args.token is not None:
- raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
- model_args.token = model_args.use_auth_token
-
- # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
- # information sent is the one passed as arguments along with your Python/PyTorch versions.
- send_example_telemetry("run_clm", model_args, data_args)
-
- # Setup logging
- logging.basicConfig(
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
- datefmt="%m/%d/%Y %H:%M:%S",
- handlers=[logging.StreamHandler(sys.stdout)],
- )
-
- if training_args.should_log:
- # The default of training_args.log_level is passive, so we set log level at info here to have that default.
- transformers.utils.logging.set_verbosity_info()
-
- log_level = training_args.get_process_log_level()
- logger.setLevel(log_level)
- datasets.utils.logging.set_verbosity(log_level)
- transformers.utils.logging.set_verbosity(log_level)
- transformers.utils.logging.enable_default_handler()
- transformers.utils.logging.enable_explicit_format()
-
- # Log on each process the small summary:
- logger.warning(
- f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
- + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
- )
- logger.info(f"Training/evaluation parameters {training_args}")
-
- # Detecting last checkpoint.
- last_checkpoint = None
- if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
- last_checkpoint = get_last_checkpoint(training_args.output_dir)
- if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
- raise ValueError(
- f"Output directory ({training_args.output_dir}) already exists and is not empty. "
- "Use --overwrite_output_dir to overcome."
- )
- elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
- logger.info(
- f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
- "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
- )
-
- # Set seed before initializing model.
- set_seed(training_args.seed)
-
- # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
- # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
- # (the dataset will be downloaded automatically from the datasets Hub).
- #
- # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
- # 'text' is found. You can easily tweak this behavior (see below).
- #
- # In distributed training, the load_dataset function guarantee that only one local process can concurrently
- # download the dataset.
- if data_args.dataset_name is not None:
- # Downloading and loading a dataset from the hub.
- raw_datasets = load_dataset(
- data_args.dataset_name,
- data_args.dataset_config_name,
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- streaming=data_args.streaming,
- )
- if "validation" not in raw_datasets.keys():
- raw_datasets["validation"] = load_dataset(
- data_args.dataset_name,
- data_args.dataset_config_name,
- split=f"train[:{data_args.validation_split_percentage}%]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- streaming=data_args.streaming,
- )
- raw_datasets["train"] = load_dataset(
- data_args.dataset_name,
- data_args.dataset_config_name,
- split=f"train[{data_args.validation_split_percentage}%:]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- streaming=data_args.streaming,
- )
- else:
- data_files = {}
- dataset_args = {}
- if data_args.train_file is not None:
- data_files["train"] = data_args.train_file
- if data_args.validation_file is not None:
- data_files["validation"] = data_args.validation_file
- extension = (
- data_args.train_file.split(".")[-1]
- if data_args.train_file is not None
- else data_args.validation_file.split(".")[-1]
- )
- if extension == "txt":
- extension = "text"
- dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
- raw_datasets = load_dataset(
- extension,
- data_files=data_files,
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- **dataset_args,
- )
- # If no validation data is there, validation_split_percentage will be used to divide the dataset.
- if "validation" not in raw_datasets.keys():
- raw_datasets["validation"] = load_dataset(
- extension,
- data_files=data_files,
- split=f"train[:{data_args.validation_split_percentage}%]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- **dataset_args,
- )
- raw_datasets["train"] = load_dataset(
- extension,
- data_files=data_files,
- split=f"train[{data_args.validation_split_percentage}%:]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- **dataset_args,
- )
-
- # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
- # https://huggingface.co/docs/datasets/loading_datasets.
-
- # Load pretrained model and tokenizer
- #
- # Distributed training:
- # The .from_pretrained methods guarantee that only one local process can concurrently
- # download model & vocab.
-
- config_kwargs = {
- "cache_dir": model_args.cache_dir,
- "revision": model_args.model_revision,
- "token": model_args.token,
- "trust_remote_code": model_args.trust_remote_code,
- }
- if model_args.config_name:
- config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
- elif model_args.model_name_or_path:
- config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
- else:
- config = CONFIG_MAPPING[model_args.model_type]()
- logger.warning("You are instantiating a new config instance from scratch.")
- if model_args.config_overrides is not None:
- logger.info(f"Overriding config: {model_args.config_overrides}")
- config.update_from_string(model_args.config_overrides)
- logger.info(f"New config: {config}")
-
- tokenizer_kwargs = {
- "cache_dir": model_args.cache_dir,
- "use_fast": model_args.use_fast_tokenizer,
- "revision": model_args.model_revision,
- "token": model_args.token,
- "trust_remote_code": model_args.trust_remote_code,
- }
- if model_args.tokenizer_name:
- tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
- elif model_args.model_name_or_path:
- tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
- else:
- raise ValueError(
- "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
- "You can do it from another script, save it, and load it from here, using --tokenizer_name."
- )
-
- if model_args.model_name_or_path:
- torch_dtype = (
- model_args.torch_dtype
- if model_args.torch_dtype in ["auto", None]
- else getattr(torch, model_args.torch_dtype)
- )
- model = AutoModelForCausalLM.from_pretrained(
- model_args.model_name_or_path,
- from_tf=bool(".ckpt" in model_args.model_name_or_path),
- config=config,
- cache_dir=model_args.cache_dir,
- revision=model_args.model_revision,
- token=model_args.token,
- trust_remote_code=model_args.trust_remote_code,
- torch_dtype=torch_dtype,
- low_cpu_mem_usage=model_args.low_cpu_mem_usage,
- )
- else:
- model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
- n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
- logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
-
- # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
- # on a small vocab and want a smaller embedding size, remove this test.
- embedding_size = model.get_input_embeddings().weight.shape[0]
- if len(tokenizer) > embedding_size:
- model.resize_token_embeddings(len(tokenizer))
-
- # Preprocessing the datasets.
- # First we tokenize all the texts.
- if training_args.do_train:
- column_names = list(raw_datasets["train"].features)
- else:
- column_names = list(raw_datasets["validation"].features)
- # text_column_name = "text" if "text" in column_names else column_names[0]
- text_column_name = "content"
-
- # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
- tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
-
- def tokenize_function(examples):
- with CaptureLogger(tok_logger) as cl:
- output = tokenizer(examples[text_column_name])
- # clm input could be much much longer than block_size
- if "Token indices sequence length is longer than the" in cl.out:
- tok_logger.warning(
- "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
- " before being passed to the model."
- )
- return output
-
- with training_args.main_process_first(desc="dataset map tokenization"):
- if not data_args.streaming:
- tokenized_datasets = raw_datasets.map(
- tokenize_function,
- batched=True,
- num_proc=data_args.preprocessing_num_workers,
- remove_columns=column_names,
- load_from_cache_file=not data_args.overwrite_cache,
- desc="Running tokenizer on dataset",
- )
- else:
- tokenized_datasets = raw_datasets.map(
- tokenize_function,
- batched=True,
- remove_columns=column_names,
- )
- if hasattr(config, "max_position_embeddings"):
- max_pos_embeddings = config.max_position_embeddings
- else:
- # Define a default value if the attribute is missing in the config.
- max_pos_embeddings = 1024
-
- if data_args.block_size is None:
- block_size = tokenizer.model_max_length
- if block_size > max_pos_embeddings:
- logger.warning(
- f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
- f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
- )
- if max_pos_embeddings > 0:
- block_size = min(1024, max_pos_embeddings)
- else:
- block_size = 1024
- else:
- if data_args.block_size > tokenizer.model_max_length:
- logger.warning(
- f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
- f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
- )
- block_size = min(data_args.block_size, tokenizer.model_max_length)
-
- # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
- def group_texts(examples):
- # Concatenate all texts.
- concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
- total_length = len(concatenated_examples[list(examples.keys())[0]])
- # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
- # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
- total_length = (total_length // block_size) * block_size
- # Split by chunks of max_len.
- result = {
- k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
- for k, t in concatenated_examples.items()
- }
- result["labels"] = result["input_ids"].copy()
- return result
-
- # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
- # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
- # to preprocess.
- #
- # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
- # https://huggingface.co/docs/datasets/process#map
-
- with training_args.main_process_first(desc="grouping texts together"):
- if not data_args.streaming:
- lm_datasets = tokenized_datasets.map(
- group_texts,
- batched=True,
- num_proc=data_args.preprocessing_num_workers,
- load_from_cache_file=not data_args.overwrite_cache,
- desc=f"Grouping texts in chunks of {block_size}",
- )
- else:
- lm_datasets = tokenized_datasets.map(
- group_texts,
- batched=True,
- )
-
- if training_args.do_train:
- if "train" not in tokenized_datasets:
- raise ValueError("--do_train requires a train dataset")
- train_dataset = lm_datasets["train"]
- if data_args.max_train_samples is not None:
- max_train_samples = min(len(train_dataset), data_args.max_train_samples)
- train_dataset = train_dataset.select(range(max_train_samples))
-
- if training_args.do_eval:
- if "validation" not in tokenized_datasets:
- raise ValueError("--do_eval requires a validation dataset")
- eval_dataset = lm_datasets["validation"]
- if data_args.max_eval_samples is not None:
- max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
- eval_dataset = eval_dataset.select(range(max_eval_samples))
-
- def preprocess_logits_for_metrics(logits, labels):
- if isinstance(logits, tuple):
- # Depending on the model and config, logits may contain extra tensors,
- # like past_key_values, but logits always come first
- logits = logits[0]
- return logits.argmax(dim=-1)
-
- metric = evaluate.load("accuracy")
-
- def compute_metrics(eval_preds):
- preds, labels = eval_preds
- # preds have the same shape as the labels, after the argmax(-1) has been calculated
- # by preprocess_logits_for_metrics but we need to shift the labels
- labels = labels[:, 1:].reshape(-1)
- preds = preds[:, :-1].reshape(-1)
- return metric.compute(predictions=preds, references=labels)
-
- # Initialize our Trainer
- trainer = Trainer(
- model=model,
- args=training_args,
- train_dataset=train_dataset if training_args.do_train else None,
- eval_dataset=eval_dataset if training_args.do_eval else None,
- tokenizer=tokenizer,
- # Data collator will default to DataCollatorWithPadding, so we change it.
- data_collator=default_data_collator,
- compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
- preprocess_logits_for_metrics=preprocess_logits_for_metrics
- if training_args.do_eval and not is_torch_tpu_available()
- else None,
- )
-
- # Training
- if training_args.do_train:
- checkpoint = None
- if training_args.resume_from_checkpoint is not None:
- checkpoint = training_args.resume_from_checkpoint
- elif last_checkpoint is not None:
- checkpoint = last_checkpoint
- train_result = trainer.train(resume_from_checkpoint=checkpoint)
- trainer.save_model() # Saves the tokenizer too for easy upload
-
- metrics = train_result.metrics
-
- max_train_samples = (
- data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
- )
- metrics["train_samples"] = min(max_train_samples, len(train_dataset))
-
- trainer.log_metrics("train", metrics)
- trainer.save_metrics("train", metrics)
- trainer.save_state()
-
- # Evaluation
- if training_args.do_eval:
- logger.info("*** Evaluate ***")
-
- metrics = trainer.evaluate()
-
- max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
- metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
- try:
- perplexity = math.exp(metrics["eval_loss"])
- except OverflowError:
- perplexity = float("inf")
- metrics["perplexity"] = perplexity
-
- trainer.log_metrics("eval", metrics)
- trainer.save_metrics("eval", metrics)
-
- kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
- if data_args.dataset_name is not None:
- kwargs["dataset_tags"] = data_args.dataset_name
- if data_args.dataset_config_name is not None:
- kwargs["dataset_args"] = data_args.dataset_config_name
- kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
- else:
- kwargs["dataset"] = data_args.dataset_name
-
- if training_args.push_to_hub:
- trainer.push_to_hub(**kwargs)
- else:
- trainer.create_model_card(**kwargs)
-
-
- def _mp_fn(index):
- # For xla_spawn (TPUs)
- main()
-
-
- if __name__ == "__main__":
- main()
-
- """
- python run_clm.py \
- --train_file /tmp/pycharm_project_806/LCSTS_new/train.json \
- --tokenizer_name /home/chenjq/pythonWork/nlp/train_new_gpt2/my-tok \
- --model_type gpt2 \
- --num_train_epochs 2 \
- --per_device_train_batch_size 4 \
- --gradient_accumulation_steps 8 \
- --do_train \
- --output_dir ./tmp/test-clm
-
- /tmp/pycharm_project_806/LCSTS_new/train.json
- /tmp/pycharm_project_806/cluener.json
- --gradient_accumulation_steps 8 \
- --max_train_samples 1000
- """
训练代码参考:
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/README.md
- from transformers import GPT2Tokenizer,GPT2LMHeadModel, set_seed
- set_seed(42)
-
- # model_path = '/tmp/pycharm_project_806/tmp/test-clm/checkpoint-5500'
- model_path = "/home/chenjq/model/gpt2"
-
- tokenizer = GPT2Tokenizer.from_pretrained(model_path)
-
- # add the EOS token as PAD token to avoid warnings
- model = GPT2LMHeadModel.from_pretrained(model_path,pad_token_id=tokenizer.eos_token_id)
-
- # encode context the generation is conditioned on
- input_ids = tokenizer.encode('美国', return_tensors='pt')
-
- # generate text until the output length (which includes the context length) reaches 50
- greedy_output = model.generate(input_ids, max_length=50)
-
- print("Output:\n" + 100 * '-')
- print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))
-
-
- # activate beam search and early_stopping
- beam_output = model.generate(
- input_ids,
- max_length=50,
- num_beams=5,
- early_stopping=True
- )
-
- print("Output:\n" + 100 * '-')
- print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
-
-
-
- # set no_repeat_ngram_size to 2
- beam_output = model.generate(
- input_ids,
- max_length=50,
- num_beams=5,
- no_repeat_ngram_size=2,
- early_stopping=True
- )
-
- print("Output:\n" + 100 * '-')
- print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
-
-
-
- # set return_num_sequences > 1
- beam_outputs = model.generate(
- input_ids,
- max_length=50,
- num_beams=5,
- no_repeat_ngram_size=2,
- num_return_sequences=5,
- early_stopping=True
- )
-
- # now we have 3 output sequences
- print("Output:\n" + 100 * '-')
- for i, beam_output in enumerate(beam_outputs):
- print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
-
-
-
-
- # activate sampling and deactivate top_k by setting top_k sampling to 0
- sample_output = model.generate(
- input_ids,
- do_sample=True,
- max_length=50,
- top_k=0
- )
-
- print("Output:\n" + 100 * '-')
- print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
-
-
-
-
- # use temperature to decrease the sensitivity to low probability candidates
- sample_output = model.generate(
- input_ids,
- do_sample=True,
- max_length=50,
- top_k=0,
- temperature=0.7
- )
-
- print("Output:\n" + 100 * '-')
- print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
-
-
-
-
-
- # set top_k to 50
- sample_output = model.generate(
- input_ids,
- do_sample=True,
- max_length=50,
- top_k=50
- )
-
- print("top_k Output:\n" + 100 * '-')
- print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
-
-
-
-
-
- # deactivate top_k sampling and sample only from 92% most likely words
- sample_output = model.generate(
- input_ids,
- do_sample=True,
- max_length=50,
- top_p=0.92,
- top_k=0
- )
-
- print("top_p Output:\n" + 100 * '-')
- print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
-
未使用bos 和 eos包裹训练的效果
(这也违规我草)
使用bos 和 eos包裹的效果
1.训练数据采用了LCSTS数据集,LCSTS_new是中文短摘要最常用的LCSTS短摘要数据集的升级版本,在数据量、质量方面均有显著提升,在信息摘要与提炼的过程中,与原文的事实一致性需要得到重点关注。
- {
- "id": 6,
- "summary": "中国游客大增多国放宽签证",
- "content": "①北京和上海户籍的游客可获得韩国多次签证;②“整容客”可以不经由韩国使领馆、直接在网上申请签证;③中泰免签的实施日期尚未敲定;④越南已向中国持通行证旅游的公民全面开放。"
- }
2.从生成结果上看,自己训练的比原始的更好。
3.训练数据大约500M,都是短文本,新闻数据,缺乏多样性。可以尝试增加数据多样性,增加文本长度。
1. 预训练阶段,批量输入数据格式是怎样的?
a.一种选择是将所有文本拼成一大段,然后按固定长度如1024去切成每一个样本。参考如下代码:
- def group_texts(examples):
- # Concatenate all texts.
- concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
- total_length = len(concatenated_examples[list(examples.keys())[0]])
- # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
- # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
- total_length = (total_length // block_size) * block_size
- # Split by chunks of max_len.
- result = {
- k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
- for k, t in concatenated_examples.items()
- }
- result["labels"] = result["input_ids"].copy()
- return result
b. 也可以使用bos和eos token将一段话包裹(上述sentencepiece tokenizer已经实现),然后拼接成一大段,然后按照a方法进行切分。(本博客采用此方案,实验证明此方案比a方案好,生成内容更有逻辑性)
c. 不进行拼接,使用eos token单独填充(填充在右边)每个样本,形成batch input(未尝试过)
2. 如果我想训练一个文本生成模型,输入应该是什么样子的?
按1.b所示方法进行构建数据。
3.gpt2为什么不能进行左填充?
因为gpt2采用的绝对位置编码,如果使用左填充,训练的时候,正文位置编码可能不是从1开始,但是推理的时候,正文位置编码始终是从1开始。(这也是为什么GPT2一般不支持批量推理的原因)
4.GPT2没有pad token,通常都是将pad token设置为eos token, 同事相应的label应该设置为-100(因为-100不会计算损失)
https://github.com/minmie/gpt2-pretrain
https://download.csdn.net/download/u014403221/88794676
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。