当前位置:   article > 正文

Adaptive Filter Learing Notes 自适应滤波学习笔记08 Levinson-Durbin算法_levinson-durbin算法优缺点

levinson-durbin算法优缺点

Levinson-Durbin算法是用来解线性预测误差滤波的系数(prediction-error filter coefficients)和预测误差功率(prediction-error power)的递归算法,优点是减少计算量和存储空间

Levinson-Durbin算法的推导

先参考上一篇笔记Adaptive Filter Learing Notes 自适应滤波学习笔记07 线性预测的记号, R m + 1 a m = [ P m 0 ] , R m + 1 a m B ∗ = [ 0 P m ] . \boldsymbol{R}_{m+1}\boldsymbol{a}_{m}=\left[

Pm0
\right],\quad \boldsymbol{R}_{m+1}\boldsymbol{a}_{m}^{B*}=\left[
0Pm
\right]. Rm+1am=[Pm0],Rm+1amB=[0Pm]. R m + 1 [ a m − 1 0 ] = [ R m r m B ∗ r m B T r ( 0 ) ] [ a m − 1 0 ] = [ R m a m − 1 r m B T a m − 1 ] = : [ P m − 1 0 Δ m − 1 ] .
Rm+1[am10]=[RmrmBrmBTr(0)][am10]=[Rmam1rmBTam1]=:[Pm10Δm1].
Rm+1[am10]===:[RmrmBTrmBr(0)][am10][Rmam1rmBTam1]Pm10Δm1.
Δ m − 1 = r m B T a m − 1 = a m − 1 B T r m \Delta_{m-1}=\boldsymbol{r}_{m}^{BT}\boldsymbol{a}_{m-1}=\boldsymbol{a}_{m-1}^{BT}\boldsymbol{r}_m Δm1=rmBTam1=am1BTrm. R m + 1 [ 0 a m − 1 B ∗ ] = [ r ( 0 ) r m H r m R m ] [ 0 a m − 1 B ∗ ] = [ r m H a m − 1 B ∗ R m a m − 1 B ∗ ] = [ Δ m − 1 ∗ 0 P m − 1 ] .
Rm+1[0am1B]=[r(0)rmHrmRm][0am1B]=[rmHam1BRmam1B]=[Δm10Pm1].
Rm+1[0am1B]===[r(0)rmrmHRm][0am1B][rmHam1B

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/182723
推荐阅读
  

闽ICP备14008679号