赞
踩
好好学习,天天向上!
活动地址:CSDN21天学习挑战赛
●AlexNet有八个带权层, 前五个是卷积层,剩下三层是全连接层。第一个卷积层利用96个大小为11X11X3、步长为4个像素的核,对大小为224X224X3的输入图像进行卷积。第二个卷积层接收第一个卷积层输出为输入,用5X5X48的核对其进行滤波。第三、四、五个卷积层彼此相连,中间没有池化层。第二、四、五个卷积层的核只连接到前一个卷积层也位于同一GPU中的那些核映射上。第三个卷积层的核被连接到第二个卷积层中的所有核映射上。全连接层中的神经元被连接到前一层中所有的神经元上。响应归一化层跟在第一、第二个卷积层后面。最大化池化层跟在响应归一化层以及第五个卷积层之后。RelU非线性应用于每个卷积层及全连接层的输出。
AlexNet :AlexNet包含了6亿3000万个连接,6000万个参数和65万个神经元,拥有5个卷积层,其中3个卷积层后面连接了最大池化层,最后还有3个全连接层。成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。整个AlexNet有8个需要训练参数的层(不包括池化层和LRN层),前5层为卷积层,后3层为全连接层,AlexNet最后一层是有1000类输出的Softmax层用作分类。
GoogLeNet:该结构将CNN中常用的卷积(1x1,3x3,5x5)、池化操作(3x3)堆叠在一起(卷积、池化后的尺寸相同,将通道相加),一方面增加了网络的宽度,另一方面也增加了网络对尺度的适应性。使用1x1的卷积块(NIN)来减少特征数量,这通常被称为“瓶颈”,可以减少深层神经网络的计算负担。每个池化层之前,增加feature maps, 增加每一层的宽度来增多特征的组合性
VGGNet :VGG的巨大进展是通过依次采用多个3*3卷积,能够模拟出更大的感受野(receptive field)的效果,两个3*3卷积可以模拟出5*5的感受野,三个3*3的卷积可以模拟出7*7的感受野。VGGNet拥有5段卷积,每一段内有2~3个卷积层,同时每段尾部会连接一个最大池化层用来缩小图片尺寸。每段内的卷积核数量一样,越靠后的段的卷积核数量越多:64 – 128 – 256 – 512 – 512。
ResNet :ResNet声名鹊起的一个很重要的原因是,它提出了残差学习的思想。与普通的CNN相比,ResNet 最大的不同在于 ResNet 有很多的旁路直线将输入直接连到网络后面的层中,使得网络后面的层也可以直接学习残差,这种网络结构成为 shortcut 或 skip connection。这样做解决了传统CNN在信息传递时,或多或少会丢失原始信息的问题,保护数据的完整性,整个网络只需要学习输入、输出差别的一部分,简化了学习的难度和目标。
DenseNet :它的基本思路与ResNet一致,但是它建立的是前面所有层与后面层的密集连接(dense connection),它的名称也是由此而来。DenseNet的另一大特色是通过特征在channel上的连接来实现特征重用(feature reuse)。
MobileNet:MobileNet 的基本单元是深度级可分离卷积(depthwise separable convolution——DSC),其实这种结构之前已经被使用在Inception模型中。从概念上来说,MobileNetV1正试图实现两个基本目标,以构建移动第一计算视觉模型:1,较小的模型,参数数量更少;2,较小的复杂度,运算中乘法和加法更少。遵循这些原则,MobileNet V1 是一个小型,低延迟,低功耗的参数化模型,可以满足各种用例的资源约束。它们可以用于实现:分类,检测,嵌入和分割等功能。
ShuffleNet:新的架构利用两个操作:逐点群卷积(pointwise group convolution)和通道混洗(channel shuffle),与现有先进模型相比在类似的精度下大大降低计算量。在ImageNet和MS COCO上ShuffleNet表现出比其他先进模型的优越性能。
EfficientNet:对于ImageNet历史上的各种网络而言,可以说EfficientNet在效果上实现了碾压。普通人来训练和扩展EfficientNet实在过于昂贵,所以对于我们来说,最好的方法就是迁移学习。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。