赞
踩
分享自:https://blog.csdn.net/weixin_43694096/article/details/126354660
SPP
模块是何凯大神在2015年的论文《Spatial Pyramid Pooling in Deep Convolution Networks for Visual Recognition》中提出来的.
SPP
全称为空间金字塔池化结构,主要是为了解决两个问题
class SPP(nn.Module):
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
def __init__(self, c1, c2, k=(5, 9, 13)):
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
这个是Yolov5作者基于SPP提出的,速度较SPP快很多(2.5倍),所以叫做SPP-Fast
class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
美团YOLOv6
提出的模块,感觉和SPPF
只差了一个激活函数,简单测试了一下,单个ConvBNReLU
速度比ConvBNSiLU
快18%
class SimConv(nn.Module): '''Normal Conv with ReLU activation''' def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False): super().__init__() padding = kernel_size // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.ReLU() def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x)) class SimSPPF(nn.Module): '''Simplified SPPF with ReLU activation''' def __init__(self, in_channels, out_channels, kernel_size=5): super().__init__() c_ = in_channels // 2 # hidden channels self.cv1 = SimConv(in_channels, c_, 1, 1) self.cv2 = SimConv(c_ * 4, out_channels, 1, 1) self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
受到SPP
的启发,语义分割模型DeepLabv2中提出了ASPP
模块(空洞空间金字塔池化),该模块使用具有不同采样率的多个并行空洞卷积
·。为每个采样率提取的特征在单独的分支中进一步处理,并融合以生成最终的结果。该模块通过不同的空洞率构建不同的感受野的卷积核,用来获取多尺度物体信息
,具体结构比较简单如下图所示:
ASPP 是在DeepLab中提出来的,在后续的DeepLab
版本中对其做了改进,如加入BN
层,加入深度可分离卷积等,但基本的思路还是没变。
# without BN version class ASPP(nn.Module): def __init__(self, in_channel=512, out_channel=256): super(ASPP, self).__init__() self.mean = nn.AdaptiveAvgPool2d((1, 1)) # (1,1)means ouput_dim self.conv = nn.Conv2d(in_channel,out_channel, 1, 1) self.atrous_block1 = nn.Conv2d(in_channel, out_channel, 1, 1) self.atrous_block6 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=6, dilation=6) self.atrous_block12 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=12, dilation=12) self.atrous_block18 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=18, dilation=18) self.conv_1x1_output = nn.Conv2d(out_channel * 5, out_channel, 1, 1) def forward(self, x): size = x.shape[2:] image_features = self.mean(x) image_features = self.conv(image_features) image_features = F.upsample(image_features, size=size, mode='bilinear') atrous_block1 = self.atrous_block1(x) atrous_block6 = self.atrous_block6(x) atrous_block12 = self.atrous_block12(x) atrous_block18 = self.atrous_block18(x) net = self.conv_1x1_output(torch.cat([image_features, atrous_block1, atrous_block6, atrous_block12, atrous_block18], dim=1)) return net
RFB
模块是在《ECCV2018:Receptive Field Block Net for Accurate and Fast Object Detection》一文中提出的,该文的出发点是模拟人类视觉的感受野从而加强网络的特征提取能力,在结构RFV
借鉴了Inception
的思想,主要是在Inception
的基础上加入了空洞卷积,从而有效增大了感受野。
RFB
和RFB-s
的架构,RFB-s
用于浅层人类视网膜主题图中模拟较小的pRF
,使用具有较小内核的更多分支。
class BasicConv(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True): super(BasicConv, self).__init__() self.out_channels = out_planes if bn: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) self.relu = nn.ReLU(inplace=True) if relu else None else: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True) self.bn = None self.relu = nn.ReLU(inplace=True) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class BasicRFB(nn.Module): def __init__(self, in_planes, out_planes, stride=1, scale=0.1, map_reduce=8, vision=1, groups=1): super(BasicRFB, self).__init__() self.scale = scale self.out_channels = out_planes inter_planes = in_planes // map_reduce self.branch0 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 1, dilation=vision, relu=False, groups=groups) ) self.branch1 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 2, dilation=vision + 2, relu=False, groups=groups) ) self.branch2 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, (inter_planes // 2) * 3, kernel_size=3, stride=1, padding=1, groups=groups), BasicConv((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 4, dilation=vision + 4, relu=False, groups=groups) ) self.ConvLinear = BasicConv(6 * inter_planes, out_planes, kernel_size=1, stride=1, relu=False) self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) out = torch.cat((x0, x1, x2), 1) out = self.ConvLinear(out) short = self.shortcut(x) out = out * self.scale + short out = self.relu(out) return out
该模块是YOLOv7
中使用的SPP
结构,表现优于SPPF
,但参数量和计算量提升了很多。
class SPPCSPC(nn.Module): # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)): super(SPPCSPC, self).__init__() c_ = int(2 * c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(c_, c_, 3, 1) self.cv4 = Conv(c_, c_, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) self.cv5 = Conv(4 * c_, c_, 1, 1) self.cv6 = Conv(c_, c_, 3, 1) self.cv7 = Conv(2 * c_, c2, 1, 1) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1))
#分组SPPCSPC 分组后参数量和计算量与原本差距不大,不知道效果怎么样 class SPPCSPC_group(nn.Module): def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)): super(SPPCSPC_group, self).__init__() c_ = int(2 * c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1, g=4) self.cv2 = Conv(c1, c_, 1, 1, g=4) self.cv3 = Conv(c_, c_, 3, 1, g=4) self.cv4 = Conv(c_, c_, 1, 1, g=4) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) self.cv5 = Conv(4 * c_, c_, 1, 1, g=4) self.cv6 = Conv(c_, c_, 3, 1, g=4) self.cv7 = Conv(2 * c_, c2, 1, 1, g=4) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1))
借鉴了SPPF
的思想将SPPCSPC
优化了一下,得到了SPPFCSPC
,在保持感受野不变的情况下获得速度提升;
目前这个结构被YOLOv6 3.0
版本使用了,效果很不错,大家可以看YOLOv6 3.0
的论文,里面有详细的实验结果。
class SPPFCSPC(nn.Module): def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=5): super(SPPFCSPC, self).__init__() c_ = int(2 * c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(c_, c_, 3, 1) self.cv4 = Conv(c_, c_, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv5 = Conv(4 * c_, c_, 1, 1) self.cv6 = Conv(c_, c_, 3, 1) self.cv7 = Conv(2 * c_, c2, 1, 1) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) x2 = self.m(x1) x3 = self.m(x2) y1 = self.cv6(self.cv5(torch.cat((x1,x2,x3, self.m(x3)),1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1))
这里以yolov5s.yaml
中使用各个模型替换SPP
模块
common.py
中yolo.py
中加入类名配置文件
yolov5配置文件如下:
# YOLOv5 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/340568
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。