当前位置:   article > 正文

基于卷积神经网络的电影推荐系统

基于卷积神经网络的电影推荐系统

前言

大家好,我是南木元元,热衷分享有趣实用的文章。如今协同过滤等传统推荐算法被广泛用于推荐,但也存在冷启动、矩阵稀疏等问题,本文来分享一下用深度学习的方式来实现电影推荐,主要算法基于tensorflow和卷积神级网络,web端采用python的django框架来进行开发。

实现效果

话不多说,先来看完成的效果。

算法运行结果

  • 输入:用户选择的电影id。

在这里插入图片描述
输出1:推荐出与该电影相似的电影。

在这里插入图片描述
输出2:推荐看过该电影的人还喜欢看的电影。

  • 输入:用户的id。

在这里插入图片描述
输出:推荐出前5部他可能会喜欢的电影。

系统主要界面

  • 登录模块
    在这里插入图片描述
  • 电影推荐模块

在这里插入图片描述
选择一部电影后,调用上述算法,从而为用户推荐的电影。

在这里插入图片描述

主要代码实现

网络模型

本项目使用的是文本卷积神经网络,并使用MovieLens数据集进行训练,网络模型如下:
在这里插入图片描述
经过训练后的loss:
在这里插入图片描述

网络模型的代码主要参考了这篇文章

系统相关代码

本项目主要是用python的django框架进行开发的,以下是django的一些主要代码:

  • urls.py配置路由

在这里插入图片描述

  • settings.py配置数据库

在这里插入图片描述

  • 登录模块
def login(request):
    if request.method == 'GET':
        return render(request, 'login.html')
    else:
        #用户POST提交的数据
        u = request.POST.get('user')
        p = request.POST.get('pwd')
        #把账号密码写死了
        # if u == 'cxx' and p == '123':
        #     #登录成功
        #     return redirect('/mess/')
        #从数据库中判断账号密码是否正确
        if u and p:
            c = User.objects.filter(username=u,password=p).count()
            if c >= 1:
                #获取当前登录的用户id
                cur_id = User.objects.get(username=u, password=p).id
                return redirect('/mess/?user_id='+str(cur_id))
            else:
                return render(request, 'login.html', {'msg': '账号密码错误'})
        else:
            #登录失败
            return render(request, 'login.html', {'msg': '请输入正确的账号密码'})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 推荐喜欢的电影
def like(request):
    user_id = request.GET.get('user_id')
    #获取当前用户
    my_user = models.User.objects.get(id=user_id)

    global global_model
    model = global_model
    print('-------正在推荐--------', user_id)

    list_like_movies_names, list_like_movies_ids = model.recommend_your_movie(int(user_id))
    print('你喜欢的电影:', list_like_movies_names)
    print('你喜欢的电影id:', list_like_movies_ids)

    # 你喜欢的电影
    list_dict_like = []
    for i in list_like_movies_names[:6]:
        list_dict_like.append(utils.movie_dic(i))
    for i in range(len(list_dict_like)):
        # list_dict_like[i]['movie_id'] = list_like_movies_ids[i]
        list_dict_like[i]['movie_id'] = int(list_like_movies_ids[i])    #把字典中的id转int类型,便于前端if判断
    print('相似电影列表:', list_dict_like)

    context = {}
    context['list_dict_like'] = list_dict_like
    context['my_user'] = my_user    #返回当前用户,在前端页面显示当前登陆的用户名

    return render(request, 'like.html', context)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 推荐同类型的电影和看过的人喜欢的电影
def index(request):
    #获取电影id
    movie_id = request.GET.get('movie_id')

    global global_model
    model = global_model
    print('-------正在推荐--------', movie_id)

    #choice_movie_name 选择的电影名称
    #list_same_movies_names 相似的电影名称
    #list_pepole_like_movies_names 喜欢这个电影的人还喜欢的电影名称
    #list_same_movies_ids 相似的电影id
    #list_pepole_like_movies_ids 喜欢这个电影的人还喜欢的电影id
    #和recommend_by_movie方法的返回值一一对应
    choice_movie_name, list_same_movies_names, list_pepole_like_movies_names, list_same_movies_ids, list_pepole_like_movies_ids = model.recommend_by_movie(
        int(movie_id))

    print('选择电影:', choice_movie_name)
    print('相似的电影:', list_same_movies_names)
    print('喜欢这个电影的人还喜欢:', list_pepole_like_movies_names)
    print('相似的电影id:', list_same_movies_ids)
    print('喜欢这个电影的人还喜欢id:', list_pepole_like_movies_ids)

    #选择的电影
    list_dict_choice = []
    for i in choice_movie_name:
        list_dict_choice.append(utils.movie_dic(i))
    list_dict_choice[0]['movie_id'] = movie_id
    print('选择电影列表:', list_dict_choice)

    # 相似的电影
    list_dict_same = []
    # for i in list_same_movies_names[:3]:    #最多显示3部电影
    for i in list_same_movies_names:
        list_dict_same.append(utils.movie_dic(i))
    for i in range(len(list_dict_same)):
        # list_dict_same[i]['movie_id'] = list_same_movies_ids[i]
        list_dict_same[i]['movie_id'] = int(list_same_movies_ids[i])    #把字典中的id转int类型,便于前端if判断
    print('相似电影列表:', list_dict_same)


    # 看过的用户还喜欢的电影
    list_dict_otherlike = []
    for i in list_pepole_like_movies_names:
        list_dict_otherlike.append(utils.movie_dic(i))
    for i in range(len(list_dict_otherlike)):
        # list_dict_otherlike[i]['movie_id'] = list_pepole_like_movies_ids[i]
        list_dict_otherlike[i]['movie_id'] = int(list_pepole_like_movies_ids[i])    #把字典中的id转int类型,便于前端if判断
    print('喜欢这个电影的人还喜欢列表:', list_dict_otherlike)
   

    context = {}
    context['list_dict_choice'] = list_dict_choice
    context['list_dict_same'] = list_dict_same
    context['list_dict_otherlike'] = list_dict_otherlike


    return render(request, 'index.html', context)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

结语

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/346424
推荐阅读
相关标签