赞
踩
AI实战:上海垃圾分类系列(一)之快速搭建垃圾分类模型
AI实战:上海垃圾分类系列(二)之快速搭建垃圾分类模型后台服务
AI实战:上海垃圾分类系列(三)之快速搭建垃圾分类智能问答机器人
有上海网友说,如今每天去丢垃圾时,都要接受垃圾分类阿姨的灵魂拷问:“你是什么垃圾?”
Emmmm…
为了避免每天阿姨的灵魂拷问,我们最好是出门前提前对垃圾进精准分类。
下面提供一种快速搭建基于深度学习(AI)的垃圾分类模型,让垃圾分类不再难!
使用imagenet的1000个分类,模型网络使用inception-v3。再把1000个分类映射到垃圾的4个类别中,下面看详细步骤。
搭建环境
Ubuntu16.04
python3.5
tensorflow==1.4.0
代码:
classify_image.py:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Simple image classification with Inception. Run image classification with Inception trained on ImageNet 2012 Challenge data set. This program creates a graph from a saved GraphDef protocol buffer, and runs inference on an input JPEG image. It outputs human readable strings of the top 5 predictions along with their probabilities. Change the --image_file argument to any jpg image to compute a classification of that image. Please see the tutorial and website for a detailed description of how to use this script to perform image recognition. https://tensorflow.org/tutorials/image_recognition/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os.path import re import sys import tarfile import numpy as np from six.moves import urllib import tensorflow as tf FLAGS = None # pylint: disable=line-too-long DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' # pylint: enable=line-too-long class NodeLookup(object): """Converts integer node ID's to human readable labels.""" def __init__(self, uid_chinese_lookup_path, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: label_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: uid_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt') #self.node_lookup = self.load(label_lookup_path, uid_lookup_path) self.node_lookup = self.load_chinese_map(uid_chinese_lookup_path) def load(self, label_lookup_path, uid_lookup_path): """Loads a human readable English name for each softmax node. Args: label_lookup_path: string UID to integer node ID. uid_lookup_path: string UID to human-readable string. Returns: dict from integer node ID to human-readable string. """ if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} #p = re.compile(r'[n\d]*[ \S,]*') p = re.compile(r'(n\d*)\t(.*)') for line in proto_as_ascii_lines: parsed_items = p.findall(line) print(parsed_items) uid = parsed_items[0] human_string = parsed_items[1] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def load_chinese_map(self, uid_chinese_lookup_path): # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_chinese_lookup_path).readlines() uid_to_human = {} p = re.compile(r'(\d*)\t(.*)') for line in proto_as_ascii_lines: parsed_items = p.findall(line) #print(parsed_items) uid = parsed_items[0][0] human_string = parsed_items[0][1] uid_to_human[int(uid)] = human_string return uid_to_human def id_to_string(self, node_id): if node_id not in self.node_lookup: return '' return self.node_lookup[node_id] def create_graph(): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(os.path.join( FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def run_inference_on_image(image): """Runs inference on an image. Args: image: Image file name. Returns: Nothing """ if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = tf.gfile.FastGFile(image, 'rb').read() # Creates graph from saved GraphDef. create_graph() with tf.Session() as sess: # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> chinese string lookup. node_lookup = NodeLookup(uid_chinese_lookup_path='./data/imagenet_2012_challenge_label_chinese_map.pbtxt') top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score)) #print('node_id: %s' %(node_id)) def maybe_download_and_extract(): """Download and extract model tar file.""" dest_directory = FLAGS.model_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory) def main(_): maybe_download_and_extract() image = (FLAGS.image_file if FLAGS.image_file else os.path.join(FLAGS.model_dir, 'cropped_panda.jpg')) run_inference_on_image(image) if __name__ == '__main__': parser = argparse.ArgumentParser() # classify_image_graph_def.pb: # Binary representation of the GraphDef protocol buffer. # imagenet_synset_to_human_label_map.txt: # Map from synset ID to a human readable string. # imagenet_2012_challenge_label_map_proto.pbtxt: # Text representation of a protocol buffer mapping a label to synset ID. parser.add_argument( '--model_dir', type=str, default='/tmp/imagenet', help="""\ Path to classify_image_graph_def.pb, imagenet_synset_to_human_label_map.txt, and imagenet_2012_challenge_label_map_proto.pbtxt.\ """ ) parser.add_argument( '--image_file', type=str, default='', help='Absolute path to image file.' ) parser.add_argument( '--num_top_predictions', type=int, default=5, help='Display this many predictions.' ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
下载模型
python classify_image.py
下载成功是这个样子的:
模型测试
从网上找一张图片,保存为:./img/2.png,如下:
测试方法:
python classify_image.py --image_file ./data/2.png
结果输出:
cellular telephone, cellular phone, cellphone, cell, mobile phone (score = 0.70547)
iPod (score = 0.06823)
notebook, notebook computer (score = 0.04934)
modem (score = 0.01472)
hand-held computer, hand-held microcomputer (score = 0.00770)
可以看到识别结果还是蛮准的,而且给出了top5.
使用中文标签:
测试方法:
python classify_image.py --image_file ./data/2.png
结果输出:
移动电话,移动电话,手机,手机,手机 (score = 0.70547)
iPod (score = 0.06823)
笔记本,笔记本电脑 (score = 0.04934)
调制解调器 (score = 0.01472)
手持电脑,手持微电脑 (score = 0.00770)
有了中文分类类别,下面就可以做垃圾分类映射了。
上海对垃圾分干垃圾、湿垃圾、可回收物、有害垃圾四种,生活垃圾主要分干垃圾和湿垃圾。
核心思想:
1、使用4类垃圾分类数据作为标注数据,形如
0 饮料瓶
1 废电池
2 绿叶菜
3 卫生间用纸
2、使用TextCNN训练分类模型
实战
1、数据标注
标注结果见:./data/train_data.txt , ./data/vilid_data.txt
2、核心代码:
predict.py :
import tensorflow as tf import numpy as np import os, sys import data_input_helper as data_helpers import jieba # Parameters # Data Parameters tf.flags.DEFINE_string("w2v_file", "./data/word2vec.bin", "w2v_file path") # Eval Parameters tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") tf.flags.DEFINE_string("checkpoint_dir", "./runs/checkpoints/", "Checkpoint directory from training run") # Misc Parameters tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() class RefuseClassification(): def __init__(self): self.w2v_wr = data_helpers.w2v_wrapper(FLAGS.w2v_file)#加载词向量 self.init_model() self.refuse_classification_map = {0: '可回收垃圾', 1: '有害垃圾', 2: '湿垃圾', 3: '干垃圾'} def deal_data(self, text, max_document_length = 10): words = jieba.cut(text) x_text = [' '.join(words)] x = data_helpers.get_text_idx(x_text, self.w2v_wr.model.vocab_hash, max_document_length) return x def init_model(self): checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) self.sess = tf.Session(config=session_conf) self.sess.as_default() # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(self.sess, checkpoint_file) # Get the placeholders from the graph by name self.input_x = graph.get_operation_by_name("input_x").outputs[0] self.dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we want to evaluate self.predictions = graph.get_operation_by_name("output/predictions").outputs[0] def predict(self, text): x_test = self.deal_data(text, 5) predictions = self.sess.run(self.predictions, {self.input_x: x_test, self.dropout_keep_prob: 1.0}) refuse_text = self.refuse_classification_map[predictions[0]] return refuse_text if __name__ == "__main__": if len(sys.argv) == 2: test = RefuseClassification() res = test.predict(sys.argv[1]) print('classify:', res)
3、测试
python textcnn/predict.py '猪肉饺子'
输出结果:
`classify: 湿垃圾`
import numpy as np import os, sys sys.path.append('textcnn') from textcnn.predict import RefuseClassification from classify_image import * class RafuseRecognize(): def __init__(self): self.refuse_classification = RefuseClassification() self.init_classify_image_model() self.node_lookup = NodeLookup(uid_chinese_lookup_path='./data/imagenet_2012_challenge_label_chinese_map.pbtxt', model_dir = '/tmp/imagenet') def init_classify_image_model(self): create_graph('/tmp/imagenet') self.sess = tf.Session() self.softmax_tensor = self.sess.graph.get_tensor_by_name('softmax:0') def recognize_image(self, image_data): predictions = self.sess.run(self.softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) top_k = predictions.argsort()[-5:][::-1] result_list = [] for node_id in top_k: human_string = self.node_lookup.id_to_string(node_id) #print(human_string) human_string = ''.join(list(set(human_string.replace(',', ',').split(',')))) #print(human_string) classification = self.refuse_classification.predict(human_string) result_list.append('%s => %s' % (human_string, classification)) return '\n'.join(result_list) if __name__ == "__main__": if len(sys.argv) == 2: test = RafuseRecognize() image_data = tf.gfile.FastGFile(sys.argv[1], 'rb').read() res = test.recognize_image(image_data) print('classify:\n%s' %(res))
垃圾分类识别
识别
python rafuse.py img/2.png
输出结果:
移动电话手机 => 可回收垃圾
iPod => 湿垃圾
笔记本笔记本电脑 => 可回收垃圾
调制解调器 => 湿垃圾
手持电脑手持微电脑 => 可回收垃圾
到这里整个垃圾分类识别模型基本完成,可以看到有个别错误,由于训练数据太少了导致的,这里就不在优化了。
完整工程:https://download.csdn.net/download/zengnlp/11290336
包含:
1、垃圾分类映射的训练数据、测试数据
2、完整代码
https://github.com/tensorflow/models
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。