赞
踩
我们想要进行Linux驱动开发,首先就需要知道Linux驱动框架是什么样的?编写驱动和应用层的编写有什么区别?
Linux中主要有三大类驱动类型,分别是:字符设备驱动、块设备驱动和网络设备驱动。
1、字符设备驱动:因为软件操作设备是是以字节为单位进行的,是按照字节流进行读写操作的一种设备。典型的如LCD、蜂鸣器、SPI、触摸屏等驱动,都属于字符设备驱动的范畴。大部分的驱动程序都是属于字符设备驱动。
2、块设备驱动:块设备驱动是相对于字符设备驱动而定义的,因为块设备被软件操作时,是以块为单位进行操作的(块指的是多个字节组成一个块)。块设备大多指的都是各种存储类类设备,比如EMMC、SD卡、NANDFlash、U盘等等。
3、网络设备驱动:专门针对网络设备而设计的一种驱动,不管是有线还是无线网络,都属于网络设备驱动。
另外,一个设备可以属于多种设备驱动类型,比如 USB WIFI设备,其使用 USB 接口,所以属于字符设备,但是其又能上网,所以也属于网络设备驱动。
驱动程序实际上起到承上启下的作用,上承应用程序,对下则实现了具体的硬件操作。
应用程序位于用户空间,驱动程序位于内核空间。Linux系统规定,用户空间不可以直接调用内核空间的函数。所以必须经过系统调用,应用程序才可以调用驱动程序的函数。
系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件, 应用程序可以像操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,运行在核心态,它完成以下的功能:
Linux驱动的基本框架包含两部分,“模块入口、出口的注册”和“模块入口、出口函数的实现”,如下方代码:
static int __init shanwuyan_init(void) //驱动入口函数
{
return 0;
}
static void __exit shanwuyan_exit(void) //驱动出口函数
{
}
module_init(shanwuyan_init); //注册入口函数
module_exit(shanwuyan_exit); //注册出口函数
其中,module_init()和module_exit()两个函数的作用是注册驱动的入口“shanwuyan_init”和出口“shanwuyan_exit”。加载驱动时会运行入口函数,卸载驱动时会运行出口函数。入口函数的作用是加载驱动时做一些初始化工作,比如注册设备、申请设备号、生成设备节点等等,其返回值为int类型;出口函数的作用是卸载驱动时做一些善后操作,比如注销设备、注销设备号、销毁类等等。
我们在编写应用程序的时候,首先也是先学会如何再电脑屏幕上输出 “helllo world”。同样的,我们编写的第一个驱动程序,也是先学会hello驱动,该驱动不涉及任何的硬件操作,而且也是属于字符设备驱动的范畴。主要实现的功能是:
驱动程序的编写其实也是有迹可循的,主要的编写步骤如下:
其中,驱动程序核心中的核心就是 file_operations 这个结构体了。在这个结构体里面,就是要实现这个驱动程序自己的 open、read、write等函数,并通过Linux内核提供的接口注册到内核里面去。而其他的一些步骤都是为了遵循LInux驱动程序的编写规范,用于完善这个驱动程序的。
驱动代码的编写也不用完全都自己写,我们可以参考Linux内核提供的一些已有的驱动程序,下面我们就参考内核的一份 misc 驱动,编写我们自己的hello驱动程序,hello驱动代码如下:
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
/* 1. 确定主设备号 */
static int major = 0;
static char kernel_buf[1024];
static struct class *hello_class;
#define MIN(a, b) (a < b ? a : b)
/* 3. 实现对应的open/read/write等函数,填入file_operations结构体 */
/*
* @description : 从设备读取数据
* @param - file : 内核中的文件描述符
* @param - buf : 要存储读取的数据缓冲区(就是用户空间的内存地址)
* @param - size : 要读取的长度
* @param - offset : 相对于文件首地址的偏移量(一般读取信息后,指针都会偏移读取信息的长度)
* @return : 返回读取的字节数,如果读取失败则返回-1
*/
static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
int err;
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
err = copy_to_user(buf, kernel_buf, MIN(1024, size));
return MIN(1024, size);
}
/*
* @description : 向设备写数据
* @param - file : 内核中的文件描述符
* @param - buf : 要写给设备驱动的数据缓冲区
* @param - size : 要写入的长度
* @param - offset : 相对于文件首地址的偏移量
* @return : 返回写入的字节数,如果写入失败则返回-1
*/
static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
int err;
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
err = copy_from_user(kernel_buf, buf, MIN(1024, size));
return MIN(1024, size);
}
/*
* @description : 打开设备
* @param - node : 设备节点
* @param - file : 文件描述符
* @return : 打开成功返回0,失败返回-1
*/
static int hello_drv_open (struct inode *node, struct file *file)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}
/*
* @description : 关闭设备
* @param - node : 设备节点
* @param - file : 文件描述符
* @return : 关闭成功返回0,失败返回-1
*/
static int hello_drv_close (struct inode *node, struct file *file)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}
/* 2. 定义自己的file_operations结构体 */
static struct file_operations hello_drv = {
.owner = THIS_MODULE,
.open = hello_drv_open,
.read = hello_drv_read,
.write = hello_drv_write,
.release = hello_drv_close,
};
/* 4. 把file_operations结构体告诉内核:注册驱动程序 */
/* 5. 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数 */
static int __init hello_init(void)
{
int err;
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
major = register_chrdev(0, "hello", &hello_drv); /* /dev/hello */
/* 7. 其他完善:提供设备信息,自动创建设备节点 */
hello_class = class_create(THIS_MODULE, "hello_class");
err = PTR_ERR(hello_class);
if (IS_ERR(hello_class)) {
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
unregister_chrdev(major, "hello");
return -1;
}
device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello"); /* /dev/hello */
return 0;
}
/* 6. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数 */
static void __exit hello_exit(void)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
device_destroy(hello_class, MKDEV(major, 0));
class_destroy(hello_class);
unregister_chrdev(major, "hello");
}
/* 指定驱动的入口和出口,以及声明自己的驱动遵循GPL协议(不声明的话无法把驱动加载进内核) */
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
hello驱动程序的几点说明:
这里以LED的驱动程序为例给大家讲解字符设备的驱动程序的编写流程和框架。
static struct file_operations led_fops = {
.owner = THIS_MODULE,
.open = led_open,
.read = led_read,
.write = led_write,
.release = led_release,
};
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int led_open(struct inode *inode, struct file *filp)
{
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue;
unsigned char databuf[1];
unsigned char ledstat;
retvalue = copy_from_user(databuf, buf, cnt);
if(retvalue < 0) {
printk("kernel write failed!\r\n");
return -EFAULT;
}
ledstat = databuf[0]; /* 获取状态值 */
if(ledstat == LEDON) {
led_switch(LEDON); /* 打开LED灯 */
} else if(ledstat == LEDOFF) {
led_switch(LEDOFF); /* 关闭LED灯 */
}
return 0;
}
/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
return 0;
}
static int __init led_init(void)
{
int retvalue = 0;
u32 val = 0;
/* 初始化LED */
/* 1、寄存器地址映射 */
IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);
GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);
GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);
/* 2、使能GPIO1时钟 */
val = readl(IMX6U_CCM_CCGR1);
val &= ~(3 << 26); /* 清除以前的设置 */
val |= (3 << 26); /* 设置新值 */
writel(val, IMX6U_CCM_CCGR1);
/* 3、设置GPIO1_IO03的复用功能,将其复用为
* GPIO1_IO03,最后设置IO属性。
*/
writel(5, SW_MUX_GPIO1_IO03);
/*寄存器SW_PAD_GPIO1_IO03设置IO属性
*bit 16:0 HYS关闭
*bit [15:14]: 00 默认下拉
*bit [13]: 0 kepper功能
*bit [12]: 1 pull/keeper使能
*bit [11]: 0 关闭开路输出
*bit [7:6]: 10 速度100Mhz
*bit [5:3]: 110 R0/6驱动能力
*bit [0]: 0 低转换率
*/
writel(0x10B0, SW_PAD_GPIO1_IO03);
/* 4、设置GPIO1_IO03为输出功能 */
val = readl(GPIO1_GDIR);
val &= ~(1 << 3); /* 清除以前的设置 */
val |= (1 << 3); /* 设置为输出 */
writel(val, GPIO1_GDIR);
/* 5、默认关闭LED */
val = readl(GPIO1_DR);
val |= (1 << 3);
writel(val, GPIO1_DR);
/* 6、注册字符设备驱动 */
retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);
if(retvalue < 0){
printk("register chrdev failed!\r\n");
return -EIO;
}
return 0;
}
/*
1. @description : 驱动出口函数
2. @param : 无
3. @return : 无
*/
static void __exit led_exit(void)
{
/* 取消映射 */
iounmap(IMX6U_CCM_CCGR1);
iounmap(SW_MUX_GPIO1_IO03);
iounmap(SW_PAD_GPIO1_IO03);
iounmap(GPIO1_DR);
iounmap(GPIO1_GDIR);
/* 注销字符设备驱动 */
unregister_chrdev(LED_MAJOR, LED_NAME);
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。