当前位置:   article > 正文

Spark的基础_spark背景

spark背景

Spark的基础

一、Spark的诞生背景

Spark 2009年诞生的一个技术,诞生的主要原因是因为Hadoop大数据解决方案存在一些弊端

  1. MR程序是基于磁盘进行运算,因此导致MR程序计算效率底下
  2. MR程序无法计算复杂的任务,如果想要实现复杂的计算逻辑,可能编写多个MR Job,其中后续的Job依赖于前一个Job的输出,但是多个Job无法知道前一个job,需要通过任务调度框架自己指定多job的依赖关系

二、Spark概念

Spark相当于是Hadoop的升级版本的解决方案,基于内存进行运算,并且Spark内部实现迭代式计算思想,可以在一个应用程序编写复杂的计算逻辑

Spark有一个思想(one stack to rule them all)-一栈式解决方案,一个技术实现大数据中各种计算场景的应用问题。Spark中包含很多的计算子组件

2.1 Spark Core

Spark的核心基础,Spark的任务调度规则,Spark的基础语法,数据抽象RDD。。。

2.2. Spark SQL

借助SQL或者Hive版本的HQL进行结构化数据的处理

2.3 Spark Streaming

内部采用了微批次处理思想,实现数据的实时计算

2.1~2.2:数据处理和开发的

2.4 Spark MLlib

2.5 Spark GraphX

2.6 Spark R

2.4~2.6:数据科学或者算法计算

三、Spark的特点

3.1 计算快速

Spark相当于Hadoop的升级版的大数据计算解决方案

3.2 易用性

Spark提供了多种语法的编程风格

3.3 兼容性

Spark计算框架和大数据中很多技术无缝衔接,比如Spark支持直接从HDFS、Kafka、HBase、Hive、MySQL…等等地方直接读取数据处理

3.4 通用性

Spark一个技术栈可以解决大数据中遇到的大部分计算场景问题,而且Spark各个子组件都是基于Spark Core的,因此Spark的各个子组件可以无缝的衔接转换

四、Spark的安装部署

【注意】Spark的安装部署,Spark本身就是一个分布式计算框架,如果使用Spark,我们需要使用对应的编程语言编写Spark代码,编写Spark程序不需要部署Spark程序,因此Spark的安装部署主要指的是编写好的Spark程序在什么环境下运行(编写好的Spark程序使用哪种资源调度器进行资源的申请和调度)。 Spark的安装部署就是安装部署Spark运行的资源调度器的。

Spark的资源调度器常用的有三个:Spark自带的standalone独立调度器、Hadoop的YARN、Apache的Mesos

4.1 Spark的安装部署就是安装Spark的不同的资源调度器

4.1.1 本地模式

(不使用任何的资源调度器,只在本地运行Spark程序):这种部署模式只能做测试学习使用

4.1.2 Standalone独立调度器部署模式

部署Master和Worker节点(主从架构):这种部署模式既可以测试学习、也可以做项目开发部署

4.1.3 Hadoop的YARN部署模式

部署Spark程序在YARN上运行,这种模式一般项目生产环境用的比较多

4.1.4 Apache的Mesos部署模式

部署Spark程序在Mesos上运行,这种模式一般项目生产环境用的比较多

4.2 Spark的历史日志服务器

汇聚Spark的应用程序的计算日志,借助于HDFS完操作

【注意】Spark安装部署涉及到很多端口:

  1. 7077 Spark的standalone模式下的master节点的通信端口
  2. 4000 Spark的历史日志服务器的默认端口
  3. 8080/自定义端口 Spark的standalone模式下Master节点的webui端口
  4. 8088 YARN的web访问端口

五、Spark程序的部署运行的方式

spark-submit [options] <app jar | python file | R file> [app arguments]

5.1 options的常用选型以及含义

参数说明
--master masterurl将Spark程序部署到哪个资源管理器运行
spark://host:port, mesos://host:port, yarn,k8s://https://host:port, or local (Default: local[*]).
--deploy-mode modeSpark应用程序的部署模式(YARN场景下) 取值 client cluster
--class class_namejar包中Driver驱动程序的全限定类名
--name namespark应用程序的别名
--driver-memory 1024Mdriver驱动程序
--executor-memory 1G等同于YARN中容器,一个容器有多少内存
--executor-cores num每一个executor中有多少个内核

六、Spark的编程方式

6.1 REPL交互式命令行窗口代码编程

Spark提供了一个REPL工具:spark-shell spark-shell --master local[*]

6.2 Java/Scala/Python等等代码进行编程

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/389414
推荐阅读
相关标签
  

闽ICP备14008679号