当前位置:   article > 正文

使用python实现CNN-GRU故障诊断_python gru

python gru

要实现1DCNN-GRU进行故障诊断,您可以使用以下Python代码作为参考:

首先,导入所需的库:

import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, MaxPooling1D, GlobalAveragePooling1D, GRU, Dense
from tensorflow.keras.models import Sequential
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

加载训练集和测试集的数据:

train_X = np.load('train_X.npy')  # 加载训练集特征数据
train_Y = np.load('train_Y.npy')  # 加载训练集标签数据

test_X = np.load('test_X.npy')  # 加载测试集特征数据
test_Y = np.load('test_Y.npy')  # 加载测试集标签数据
  • 1
  • 2
  • 3
  • 4
  • 5

定义模型结构:

model = Sequential()
model.add(Conv1D(64, 3, activation='relu', input_shape=train_X.shape[1:]))
model.add(MaxPooling1D(2))
model.add(Conv1D(128, 3, activation='relu'))
model.add(MaxPooling1D(2))
model.add(GRU(64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

训练模型:

    绘制训练过程的准确率和损失曲线:

    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.title('Model Accuracy')
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['Train', 'Test'], loc='upper left')
    plt.show()
    
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.title('Model Loss')
    plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend(['Train', 'Test'], loc='upper right')
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    在测试集上进行预测并计算准确率和混淆矩阵

    pred_Y = model.predict(test_X)
    pred_Y = np.round(pred_Y).flatten()
    
    accuracy = np.mean(pred_Y == test_Y)
    print("Test Accuracy: {:.2f}%".format(accuracy * 100))
    
    cm = confusion_matrix(test_Y, pred_Y)
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=['Normal', 'Fault'], yticklabels=['Normal', 'Fault'])
    plt.title("Confusion Matrix")
    plt.xlabel("Predicted Labels")
    plt.ylabel("True Labels")
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    请确保您已经准备好训练集和测试集的数据(train_X.npytrain_Y.npytest_X.npytest_Y.npy)。这只是一个简单示例,您可能需要根据您的数据集的特点进行必要的调整,例如输入信号的形状、类别数量和标签格式等。

    希望对您有所帮助!如需更详细或个性化的帮助,请提供更多相关代码和数据。

    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/414092
    推荐阅读
    相关标签
      

    闽ICP备14008679号