赞
踩
【前段时间往硬盘里导东西,不小心丢了好多项目和数据,其中包括之前调试好的Yolov5和用小孔数据集训练好的权重文件、预测结果等等等,恢复无果,今天重新配置一番,发现之前的配置和训练过程没有记录,好多步骤都忘了,因此写下这篇文章做记录】
需要下载的内容就两个:Yolov5项目包 and 预训练权重文件,搭梯子下载快一点。
Yolov5项目包下载地址:https://github.com/ultralytics/yolov5/tree/v5.0
权重文件下载地址 :https://github.com/ultralytics/yolov5/releases
权重文件我一般习惯放在weights这个文件夹里。
下载好后还需要按照requirements.txt文件配置环境,配置好环境后可以运行detect.py文件测试一下,解决解决报错。
这里记录两个报错,解决方法也都是参考的其他文章。
原因是common.py中没有SPPF这个类,应该是版本问题。其他文章中给出两个解决方法,一是下载其他版本中的commom.py文件替换,二是在common.py文件中加上这个类,注意别忘了import warnings
import warnings class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
原因是权重文件有问题,我直接用这个链接里的v5s权重文件替换了自己的s权重文件就解决了。
首先是制作自己的数据集,labelimg标注,不多说。
接着是将标注文件转换为Yolo可用的格式,我一般习惯标注为voc格式,再转换为yolo可用的txt格式。
代码直接用的炮哥的https://blog.csdn.net/didiaopao/article/details/120022845文章里给出了voc格式转换为txt格式并自动划分训练集和验证集的代码,还给出了txt格式直接划分训练集和验证集的代码。
下面粘的代码是我根据自己的文件路径修改过的,并且具有无缺陷图片生成空txt文件的功能(我的数据集正常图片是没有标注文件的,原代码中会直接略过这些图片,所以我修改了一下,粘在这里只是防止自己下次弄丢资料,方便来找)
#功能:将xml格式标注文件转换为txt标注文件,并自动划分训练集和验证集 import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join import random from shutil import copyfile #classes = ["hat", "person"] # classes=["ball"] classes = ["cracks", "sandholes",'bumps'] TRAIN_RATIO = 80 def clear_hidden_files(path): dir_list = os.listdir(path) for i in dir_list: abspath = os.path.join(os.path.abspath(path), i) if os.path.isfile(abspath): if i.startswith("._"): os.remove(abspath) else: clear_hidden_files(abspath) def convert(size, box): dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(image_id): #in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id) xml_path = os.path.join(annotation_dir,image_id+'.xml') in_file = open(xml_path) #out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w') out_file = open(yolo_labels_dir+'/%s.txt' % image_id, 'w') tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w, h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') in_file.close() out_file.close() wd = os.getcwd() wd = os.getcwd() #data_base_dir = os.path.join(wd, "VOCdevkit/") data_base_dir = 'E:/Dataset/' dataset_name = 'Ostiole_Samples' if not os.path.isdir(data_base_dir): os.mkdir(data_base_dir) work_sapce_dir = os.path.join(data_base_dir, dataset_name+'/') if not os.path.isdir(work_sapce_dir): os.mkdir(work_sapce_dir) annotation_dir = os.path.join(work_sapce_dir, "Annotations/") if not os.path.isdir(annotation_dir): os.mkdir(annotation_dir) clear_hidden_files(annotation_dir) image_dir = os.path.join(work_sapce_dir, "JPEGImages/") if not os.path.isdir(image_dir): os.mkdir(image_dir) clear_hidden_files(image_dir) yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/") if not os.path.isdir(yolo_labels_dir): os.mkdir(yolo_labels_dir) clear_hidden_files(yolo_labels_dir) save_dir = os.path.join(work_sapce_dir, "forYolo/") if not os.path.isdir(save_dir): os.mkdir(save_dir) clear_hidden_files(save_dir) yolov5_images_dir = os.path.join(save_dir, "images/") if not os.path.isdir(yolov5_images_dir): os.mkdir(yolov5_images_dir) clear_hidden_files(yolov5_images_dir) yolov5_labels_dir = os.path.join(save_dir, "labels/") if not os.path.isdir(yolov5_labels_dir): os.mkdir(yolov5_labels_dir) clear_hidden_files(yolov5_labels_dir) yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/") if not os.path.isdir(yolov5_images_train_dir): os.mkdir(yolov5_images_train_dir) clear_hidden_files(yolov5_images_train_dir) yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/") if not os.path.isdir(yolov5_images_test_dir): os.mkdir(yolov5_images_test_dir) clear_hidden_files(yolov5_images_test_dir) yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/") if not os.path.isdir(yolov5_labels_train_dir): os.mkdir(yolov5_labels_train_dir) clear_hidden_files(yolov5_labels_train_dir) yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/") if not os.path.isdir(yolov5_labels_test_dir): os.mkdir(yolov5_labels_test_dir) clear_hidden_files(yolov5_labels_test_dir) train_file = open(os.path.join(save_dir, "yolov5_train.txt"), 'w') test_file = open(os.path.join(save_dir, "yolov5_val.txt"), 'w') train_file.close() test_file.close() train_file = open(os.path.join(save_dir, "yolov5_train.txt"), 'a') test_file = open(os.path.join(save_dir, "yolov5_val.txt"), 'a') list_imgs = os.listdir(image_dir) # list image files prob = random.randint(1, 100) print("Probability: %d" % prob) for i in range(0, len(list_imgs)): path = os.path.join(image_dir, list_imgs[i]) if os.path.isfile(path): image_path = image_dir + list_imgs[i] voc_path = list_imgs[i] (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path)) (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path)) annotation_name = nameWithoutExtention + '.xml' annotation_path = os.path.join(annotation_dir, annotation_name) label_name = nameWithoutExtention + '.txt' label_path = os.path.join(yolo_labels_dir, label_name) prob = random.randint(1, 100) print("Probability: %d" % prob) if (prob < TRAIN_RATIO): # train dataset if os.path.exists(annotation_path): train_file.write(image_path + '\n') convert_annotation(nameWithoutExtention) # convert label copyfile(image_path, yolov5_images_train_dir + voc_path) copyfile(label_path, yolov5_labels_train_dir + label_name) else: train_file.write(image_path + '\n') open(label_path,'w').close() copyfile(image_path, yolov5_images_train_dir + voc_path) copyfile(label_path, yolov5_labels_train_dir + label_name) else: # test dataset if os.path.exists(annotation_path): test_file.write(image_path + '\n') convert_annotation(nameWithoutExtention) # convert label copyfile(image_path, yolov5_images_test_dir + voc_path) copyfile(label_path, yolov5_labels_test_dir + label_name) else: test_file.write(image_path + '\n') open(label_path,'w').close() copyfile(image_path, yolov5_images_test_dir + voc_path) copyfile(label_path, yolov5_labels_test_dir + label_name) train_file.close() test_file.close()
分完训练集和验证集之后就像下图这样。
YOLOLabels中存放的是所有图片的txt格式标注文件,没有标注的就是空文件。另外还生成两个txt文件,分别存放训练集和验证集图片的路径。
环境配置好、数据集制作完成,就可以进行训练了。每次训练时都需要修改两个配置文件,一个是data里的.yaml文件,一个是models里的.yaml文件。
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: E:\Dataset\Ostiole_Samples\forYolo\images\train\
val: E:\Dataset\Ostiole_Samples\forYolo\images\val\
# number of classes
nc: 3
# class names
names: ['cracks','sandholes','bumps']
解决方法参考的是这篇文章
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。